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Abstract
Diversity is an important principle in data selection and summarization, facility location, and
recommendation systems. Our work focuses on maximizing diversity in data selection, while offering
fairness guarantees. In particular, we offer the first study that augments the Max-Min diversification
objective with fairness constraints. More specifically, given a universe U of n elements that can be
partitioned into m disjoint groups, we aim to retrieve a k-sized subset that maximizes the pairwise
minimum distance within the set (diversity) and contains a pre-specified ki number of elements
from each group i (fairness). We show that this problem is NP-complete even in metric spaces,
and we propose three novel algorithms, linear in n, that provide strong theoretical approximation
guarantees for different values of m and k. Finally, we extend our algorithms and analysis to the
case where groups can be overlapping.
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1 Introduction

Data is generated and collected from all aspects of human activity, in domains like commerce,
medicine, and transportation, as well as scientific measurements, simulations, and environ-
mental monitoring. However, while datasets grow large and are readily available, they are
often down-sampled for various uses. This is often due to practical implications, e.g., analytics
workflows may be designed, tested, and debugged over subsets of the data for efficiency
reasons. Other times, machine learning applications use subsets of the data for training and
testing, while applications that target human consumption, e.g., data exploration, can only
display small parts of the data at a time, since human users can visually process limited
information.

While data subset selection is very common, deriving good subsets is a non-trivial task.
In this paper, we focus on two principles in data selection: diversity and fairness. Diversity
and fairness are related but distinct concepts. Specifically, diversity seeks to maximize
the dissimilarity of the items in a set. Intuitively, a diverse set of items selected from a
dataset D represents more and different aspects of the information present in D. Prior work
has suggested several diversity objectives [16, 30, 32, 43], typically defined in terms of an
element-wise distance function over numerical attributes (e.g., geographic location, age).
On the other hand, fairness aims to achieve some specified level of representation across
different categories or groups, and is typically defined over categorical attributes (e.g., race,
gender). While one could consider combining fairness and diversity into a single objective,
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Figure 1 Three examples of selection of four items from a dataset of Nobel laureates. The first
set on the left is diverse with respect to age; the second set is fair with respect to gender; the third
set, on the right, is both diverse with respect to age and fair with respect to gender.

comparing numerical and categorical attributes is not straightforward, as it typically requires
ad hoc decisions in discretizing numerical attributes or defining a distance function involving
numeric and categorical attributes.

Figure 1 demonstrates an example of the principles of diversity and fairness in subset
selection. Consider a web search query over a dataset of Nobel laureates. There are close
to a thousand laureates, but the web search only serves a small number of results for
human consumption. Figure 1 shows three examples of possible subsets of four items. The
first subset optimizes the set’s diversity with respect to the age of the laureates at the
time of the award, but only contains male scientists. The second set achieves fair gender
representation, but is not diverse with respect to age. The third set achieves both diversity
and fairness. The concept of fair and diverse data selection is motivated by many real-
world scenarios: transportation equity in conjunction with optimizing traditional objectives
(e.g., geographic coverage) aims to design accessible transportation systems for historically
disadvantaged groups [37]; formulating teams that represent various demographic groups
while demonstrating “diversity of thought” is becoming an important hiring goal [21, 23, 31];
in news websites, a summary of dissimilar in context documents from different news channels
minimizes redundancy and mitigates the risk of showing a polarized opinion [23].

Our focus. In this paper, our goal is to maximize diversity in data selection with respect
to numerical attributes, while ensuring the satisfaction of fairness constraints with respect
to categorical ones. We focus on the Max-Min diversification model [23, 43, 46], which is
among the most well-studied and frequently-used diversity models in the data management
community. Max-Min diversification seeks to select a set of k items, such that the distance
between any two items is maximized. We further express fairness as cardinality constraints:
given m demographic groups, a set is fair if it contains a pre-specified integer number ki of
representatives from each group. This general form of cardinality constraints captures, among
others, the common fairness objectives of proportional representation, where the sample
preserves the demographic proportions of the general population, and equal representation,
where all demographic groups are equally represented in the sample.1 These fairness objectives
have been widely studied in prior work [13, 14, 35, 45, 48, 49, 50], and fit naturally in problems
of data selection where existing systems can exhibit bias with respect to sensitive attributes;
e.g., a study showed that search engines tend to under-represent women in the result sets [34].

1 Our fairness constraints are based on the definitions of group fairness and statistical parity [25]. Other
definitions that focus on individual or causal fairness examine differences in treatment of individuals
from different groups who are otherwise very similar, but these are not the focus of this work.
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(a) Comparison with prior art.
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(b) Max-Min vs Max-Sum.

Figure 2 (a) Contributions of this paper with respect to the prior art. Our work is the first to
introduce fairness constraints to Max-Min diversification, and provides strong approximation results.
We also contribute algorithms to the case of overlapping classes, which has not been addressed in
prior work. (b) The department of transportation wants to place k = 14 new bike sharing stations
in downtown Boston among n = 30 candidate locations. (Top): Max-Min selects locations that
geographically cover downtown. (Bottom): Max-Sum selects locations on the outskirts of downtown.

We first study the problem of fair Max-Min diversification in the case of non-overlapping
groups, and define the problem more formally as follows: We assume a universe of elements
U =

⋃m
i=1 Ui partitioned into m non-overlapping groups, a metric distance function d defined

for any two pairs of elements, and a set of fairness constraints ⟨k1, k2, · · · , km⟩, where each ki

is a non-negative integer with ki ≤ |Ui|. Our goal is to select a set S ⊆ U of size k =
∑m

i=1 ki,
such that |S ∩ Ui| = ki for all i, and such that the minimum distance of any two items in
S is maximized. In this paper, we show that fair Max-Min diversification is NP-complete,
and we contribute efficient algorithms with strong approximation guarantees in the case
of non-overlapping groups; we further generalize our results and analysis to the case of
overlapping groups. We list our contributions at the end of this section.

Contrast with prior work and related problems

Our work augments the existing literature of traditional problems that have been studied
under group fairness constraints, such as clustering [18, 35], ranking systems [14, 48, 49, 50]
and set selection [45]. We proceed to review prior work in closely-related problems and describe
how our contributions augment the existing literature. (Summary shown in Figure 2a.)

Max-Min and Max-Sum diversification. The unconstrained version of Max-Min diversific-
ation is a special case of our fair variant for m = 1. This problem was initially studied in
the operation research literature under the name remote-edge or p-dispersion, along with
another popular diversity model, the Max-Sum or remote-clique model [16, 26, 30, 36, 43].
Similar formulations have also been studied in the context of obnoxious facility location on
graphs [46]. While the Max-Min model aims to maximize the minimum pairwise distance in
the selected set, the Max-Sum model aims to maximize the total sum of pairwise distances
in a set of k items. Max-Sum, as an additive objective, is easier to analyze but tends to
select points at the limits of the data space and thus it is not well-suited to applications that
require more uniform coverage (see example in Figure 2b). The unconstrained diversification
problems are NP-complete even in metric spaces but, for both, a greedy algorithm offers a
1
2−factor approximation, that has also been shown to be tight [6, 8, 43].

ICDT 2021
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(a) Example 1.

2 31 4

(b) Example 2.

Figure 3 (a) An example where no optimal solution for the clustering problem is optimal for the
diversity problem and vice versa. Suppose we have to pick one white point and one black point. The
unique optimal solution for clustering is {2, 5} whereas the unique optimal solution for Max-Min
diversity is {1, 6}. (b) An optimal solution for the clustering problem may be arbitrarily bad for the
diversity problem. Suppose we have to pick one white and one black point. Set {2, 3} is an optimal
solution for clustering but yields an arbitrarily bad approximation ratio for the diversity problem as
points 2 and 3 can be arbitrarily close together.

Fair Max-Sum diversification. Abbassi et al. [1] study the fair Max-Sum diversification
problem (assuming disjoint groups) under matroid constraints, where the retrieved subset
needs to be an independent set of a matroid of size k (we discuss the correspondence between
group fairness constraints and partition matroids in Appendix B). They propose a local search
algorithm with a

( 1
2 − ϵ

)
-approximation guarantee. Borodin et al. [8, 9] study a bi-criteria

optimization problem formulated as the sum of a submodular function and the Max-Sum
diversification objective under matroid constraints. They show that the local search approach
preserves the

( 1
2 − ϵ

)
-approximation guarantee. In an effort to make the state-of-the-art local

search algorithms more efficient, Ceccarello et al. [11] propose algorithmic approaches for
constructing core-sets with strong approximation guarantees, resulting in efficient algorithms
with comparable quality to the best known local search algorithms [1, 8, 9]. A core-set is a
small subset of the original data set that contains an α-approximate solution for the Max-Sum
diversification problem. Cevallos et al. [15] extend the local search approach to distances of
negative type and design algorithms with O

(
1− 1

k

)
-approximation and O(nk2 log k) running

time.

Fair k-center clustering. In the k-center clustering problem the objective is to select
k centers such that the maximum distance of any point from its closest cluster center
is minimized. Intuitively, cluster centers tend to be distributed in a way that optimizes
data coverage. Thus, k-center clustering can serve as another mechanism to perform
diverse data selection, albeit the optimization objective is different from Max-Min. Max-
Min diversification and k-center clustering are closely related. In fact, the approximation
algorithms by Gonzalez [29] for the clustering problem and by Ravi et al. [43] and Tamir [46]
for Max-Min diversification, are all based on the same farthest-first traversal heuristic, and
they all provide a 1

2 -approximation guarantee. Nonetheless, the analysis of the two algorithms
is substantially different and it is not always the case that an algorithm for one problem is
applicable to the other.

In recent work, Kleindessner et al. [35] introduced the fair variant of the problem, where
the centers are partitioned into m different groups and the constraint of selecting ki elements
per group is enforced in the output of the process. It is easy to find examples where no
optimal solution for the fair k-center problem is optimal for the Max-Min objective and
vice versa (see example in Figure 3a). Furthermore, we note that an optimal solution for
fair k-center clustering can be arbitrarily bad for the Max-Min objective (e.g., Figure 3b).
Consequently, the two problems need to be studied independently. The fair k-center clustering
problem can also be expressed by a partition matroid, for which Chen et al. [17] provide
a 3-approximation algorithm with a quadratic runtime. Kleindessner et al. [35] provide a
linear-time algorithm with a

(
3 · 2m−1 − 1

)
-approximation, while more recent work improved
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this bound to 3(1 + ϵ) [20], and 3-approximation [33]. In our Appendix, by adapting the
ideas for fair Max-Min diversification, we design a linear-time algorithm for fair k-center
clustering that also achieves a constant 3-factor approximation.

Outline of contributions: Fair Max-Min diversification. To the best of our knowledge, this
paper is the first to introduce fairness constraints to Max-Min diversification. We initially
focus on the case of disjoint groups, but extend our algorithms to tackle the overlapping case
as well. Our work makes the following contributions.

After some background and preliminaries, we introduce and formally define the problem
of fair Max-Min diversification focusing on non-overlapping groups, and further discuss
its complexity and approximability (Section 2). To the best of our knowledge, no prior
work has studied the Max-Min diversification objective under fairness constraints. In our
Appendix, we also describe how our algorithmic frameworks support any constraints that
can be expressed in terms of partition matroids (Appendix B).
We propose a swap-based greedy approximation algorithm, with linear runtime, for the
case of m = 2, which offers a constant 1

4 -factor approximation guarantee (Section 3.1).
We propose a general max-flow-based polynomial algorithm, with runtime linear in
the size of the data, that offers a 1

3m−1 -factor approximation (Section 3.2). We also
demonstrate that for constant m and small values for k = o(log n), we can achieve a
constant 1

5 -approximation, also in linear time. While this bound is obviously stronger
than our bound for the general case, the 1

5 -approximation algorithm becomes impractical
as k increases (Section 3.3).
We generalize the fair diversification problem to the case of overlapping groups (an
element can belong to multiple demographic groups). We propose polynomial-time
algorithms with 1

4 -factor approximation for the case of m = 2 and 1
3( m

⌊m/2⌋)−1
-factor

approximation for any m (Section 4).

2 Fair Max-Min Diversification: Background and Problem Definition

In this section, we review necessary background and preliminaries on the Max-Min diversific-
ation objective and relevant approximations. Then, we formally define the fair Max-Min
diversification problem, which generalizes Max-Min diversification. We further characterize
the hardness of the problem, and the hardness of its approximation.

2.1 Max-Min Diversification

Problem definition. Prior work has identified a range of diversity objectives to perform
diverse data selection. In this work we primarily focus on the Max-Min objective, which
corresponds to the minimum distance of any two items in a set S. More formally, we assume
a universe of elements U of size n, a positive integer k ≤ |U| and a pseudometric distance
function d : U ×U → R+

0 that satisfies the following properties for every u, v ∈ U : d(u, u) = 0,
d(u, v) = d(v, u) (symmetry), and d(u, v) ≤ d(u, w) + d(w, v) (triangle inequality). Then,
d(u, v) captures the dissimilarity of the elements u, v ∈ U , and the Max-Min diversity score
of a set S is div(S) = minu,v∈S,u̸=v d(u, v). Max-Min diversification seeks to identify a set
S ⊆ U and |S| = k, such that the minimum pairwise distance, div(S), of elements in S is
maximized.

ICDT 2021
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Algorithm 1 GMM Algorithm.

Input: U : Universe of available elements
k ∈ Z+

0
I: An initial set of elements

Output: S ⊆ U of size k

1: procedure GMM(U , I, k)
2: S ← ∅.
3: if I = ∅ then
4: S ← an arbitrarily chosen point in U
5: while |S| < k do
6: x← argmax

u∈U
min

s∈S∪I
d(u, s)

7: S ← S ∪ {x}
return S

Algorithms and approximations. This problem formulation was initially studied in the
operation research literature by Ravi et al. [43] and in the context of facility location on
graphs by Tamir [46]. They both show that the problem is NP-complete even in metric
spaces and give a greedy algorithm, GMM, that guarantees a 1

2 -approximation for Max-Min
diversification. Ravi et al. [43] also show that this problem cannot be approximated within a
factor better than 1

2 unless P=NP through a reduction from the clique problem.
The GMM approximation algorithm uses the simple and intuitive farthest-first traversal

heuristic: Given a set of items S, add the element from U whose minimum distance from
any element in S is the largest. Algorithm 1 shows the pseudocode for GMM, which starts
with an initial set of elements I and greedily augments it with k elements from U . Note that
the GMM algorithm, as presented by Ravi et al. [43] and Tamir [46] assumes that I = ∅; in
this paper, we use the slight variant presented in Algorithm 1, which assumes that I can be
non-empty. We use GMM as a building block for the algorithms we present in this paper.
A naive implementation of the algorithm requires O((|I| + k)2n) time but more efficient
implementation requires O((|I|+ k)n) time; see, e.g., [35, 47] for details.

2.2 Fair Max-Min Diversification
Problem definition and analysis. We assume a universe of elements U of size n, comprising
of m non-overlapping classes: U =

⋃m
i=1 Ui; we further assume a pseudometric distance

function d : U × U → R+
0 ; finally, we assume non-negative integers ⟨k1, . . . , km⟩, which we

call fairness constraints. Our goal is to identify a set S ⊆ U , such that for all i, |S ∩ Ui| = ki,
and the minimum distance of any two items in S is maximized. More formally:

Fair Max-Min : maximize
S⊆U

min
u,v∈S
u̸=v

d(u, v)

subject to |S ∩ Ui| = ki, ∀i ∈ [m]

Intuitively, Fair Max-Min aims to derive the set with the maximum diversity score
div(S), while satisfying the fairness constraints.2 Next, we state formally the hardness of Fair
Max-Min and bound its approximability. These results follow easily from the corresponding
prior results on unconstrained Max-Min diversification, as that problem reduces to Fair
Max-Min for m = 1. We give the proof of Corollary 1 in Appendix A.

2 A formulation of the fairness constraints with inequalities (≥ ki) would be essentially equivalent: since
the diversity score can only decrease as the number of selected points increases, the optimal solution
would always select the minimum number of points allowed by the constraints.
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▶ Corollary 1 (Hardness and Approximability Bound). Determining if there exists a solution to
Fair Max-Min with diversity score ≥ δ is NP-complete. Further, there exists no polynomial-
time α-approximation algorithm for Fair Max-Min with α > 1

2 , unless P=NP.

Our contributions to this problem. To the best our knowledge, this is the first paper to
augment the Max-Min diversification problem with fairness constraints. For this problem,
typically m is a small constant and k ≪ n. Therefore, when considering algorithmic
complexity, we want to avoid high-order dependence on the size of the data, n. In Section 3,
we provide linear-time algorithms, with respect to n, with strong approximation guarantees
for this problem in the case of non-overlapping groups. In Section 4, we extend our results to
design polynomial-time algorithms with strong approximation guarantees for the generalized
setting of overlapping groups.

3 Approximating Diversity

In Section 2.2, we showed that the fair formulation for the Max-Min diversification problem
is NP-hard, and cannot be approximated within a factor better than 1

2 . In this section, we
propose three approximation algorithms for this problem, with a best overall bound of 1

4 for
the case of m = 2. For ease of exposition, in the rest of the paper we frequently refer to each
of the m groups as different colors.

Our algorithms use GMM (Algorithm 1) as a building block, but adapting GMM for fair
Max-Min diversification is not straightforward. We give an example of a simple and intuitive
algorithm based on GMM that can lead to an arbitrarily bad result, even in the case of
m = 2 colors. In the first phase of the algorithm, we use GMM to greedily select elements of
any color until the constraints for one of them are satisfied. In the second phase, we allow
GMM to greedily select the remaining elements only from the under-satisfied color. Suppose
that our data consist of one white and three black elements positioned in a line as follows:

1 2 3 4

Further, consider that the fairness constraints require the selection of one white and
two black elements, and that GMM first selects a black element. Regardless of which black
element is selected first, the simple algorithm we described will always be forced to select
elements 1 and 2 – the possible selection scenarios are: {1, 4, 2}, {3, 1, 2}, and {4, 1, 2} –
which can be arbitrarily close to one another. This example demonstrates how the choices
made for one color, can lead to arbitrarily bad choices for the other color(s), and the problem
gets harder as m increases.

Our algorithms employ GMM in ways that guarantee the preservation of good choices
for all colors. We start with a swap-based algorithm that offers a 1

4 approximation when
m = 2. Then we present a flow-based algorithm with a 1

3m−1 approximation when m ≥ 3.
Both algorithms run in O(kn) time. Finally, we present a 1

5 -approximation for m ≥ 3 that
also runs in O(kn), on the assumption m is constant and k = o(log n). However, the running
time of this third algorithm has an additional factor that depends exponentially on k, which
makes the algorithm practical only for small k values, e.g., for n = 104, k ≈ 10.

3.1 Fair-and-Diverse Selection: m = 2

In the binary setting, the input is a set of points U = U1 ∪ U2 and two non-negative integers
⟨k1, k2⟩ with ki ≤ |Ui| for all i ∈ {1, 2}. We want to select a set S with ki elements from
each Ui partition such that the div(S) is maximized.

ICDT 2021
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Algorithm 2 Fair-Swap: Fair Diversification for m = 2.

Input: U1,U2: Set of points of color 1 and 2
k1, k2 ∈ Z+

0
Output: ki points in Ui for i ∈ {1, 2}

1: procedure Fair-Swap
▷Color-Blind Phase:

2: S ← GMM(U , ∅, k1 + k2)
3: Si = S ∩ Ui for i ∈ {1, 2}

▷Balancing Phase:
4: Set U = argmini(|Si| − ki) ▷Under-satisfied set
5: O = 3− U ▷Over-satisfied set
6: Compute the sets:

E ← GMM(UU ,SU , kU − |SU |)
R ← {argminx∈SO

d(x, e) : e ∈ E}
return (SU ∪ E) ∪ (SO \R)

Algorithm and intuition. Fair-Swap (Algorithm 2) has two phases; the color-blind and
the balancing phase. In the color-blind phase, we call GMM by initializing I to the empty
set so as to retrieve a set S = S1 ∪ S2 of size k (line 2). If |S1| = k1 and |S2| = k2 then these
two sets are returned. Alternatively, if one set is smaller than required, then the other set is
larger than required, and we need to rebalance these sets. Let SU be the set that is too small
and let SO be the set that is too large. The algorithm next finds kU − |SU | extra points
E ⊆ UU to add to SU by again using the GMM algorithm, this time initialized with the set
SU . For each point in E we then remove the closest point in SO (line 6). In this way we add
kU − |SU | points to SU and remove kU − |SU | points from SO. After this rebalancing the size
of SU is |SU |+ (kU − |SU |) = kU and the size of SO is |SO| − (kU − |SU |) = k − kU = kO as
required. Note that sets E and R will be empty if the sets are already balanced after the
color blind phase and thus the set S will not be altered by the balancing phase.

Running-time analysis. The running time of Fair-Swap (Algorithm 2) is O(kn). In the
color-blind phase of the algorithm we run GMM on U with I = ∅ and this takes O(kn) time.
Then in the balancing phase, computing the extra points E via the GMM algorithm takes
O(kn) time and computing R takes O(k2) time since there are fewer than k points in E and
at most k points in SO.

Approximation-factor analysis. Let S∗ be the set of k points in U that maximize the
diversity when there are no fairness constraints. Let ℓ∗ = div(S∗). Let F∗ = F∗

1 ∪ F∗
2 be

the set of k points in U that maximize the diversity subject to the constraint that for each
i ∈ {1, 2}, ki points are chosen of color i. Let ℓ∗

fair = div(F∗) and note that ℓ∗ ≥ ℓ∗
fair.

We first argue that div(S) ≥ ℓ∗/2 ≥ ℓ∗
fair/2. This follows because, by the triangle

inequality, there is at most one point in S∗ that is distance < ℓ∗/2 from each point in S;
otherwise two points in S∗ would be < ℓ∗ apart and this contradicts the fact div(S∗) = ℓ∗.
Hence, while the GMM algorithm has picked < k elements, there exists at least one element
in S∗ that can be selected that is distance ≥ ℓ∗/2 from all the points already selected. Since
the algorithm picks the next point farthest away from the points already chosen, the next
point is at least ℓ∗/2 from the existing points.

Next we argue that div(SU ∪ E) ≥ ℓ∗
fair/2. To show this, first observe that, div(SU ) ≥

div(S) ≥ ℓ∗
fair/2. Next consider the points added to E by GMM. By the triangle inequality

there is at most one point in F∗
U that is distance < ℓ∗

fair/2 from each point in SU ∪E. Hence,
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while GMM has picked < kU − |SU | elements, there exists at least one element that can be
selected that is distance ≥ ℓ∗

fair/2 from the points already selected. Since the algorithm picks
the next point farthest away from the points already chosen, the next point is at least ℓ∗

fair/2
from the existing points. Thus, we can guarantee that d(x, y) ≥ ℓ∗

fair/2 for all pairs of points
x, y ∈ SU ∪ E ∪ SO except potentially when x ∈ E and y ∈ SO.

To handle this case, for each x ∈ E we remove the closest point in SO. Note that by an
application of the triangle inequality and the fact that div(SO) ≥ ℓ∗

fair/2, for each x ∈ E

there can be at most one point y ∈ SO such that d(x, y) < ℓ∗
fair/4. Hence, after the removal

of the closest points the distance between all pairs is ≥ ℓ∗
fair/4 as required. We summarize

the analysis of this section as follows:

▶ Theorem 2. Fair-Swap (Algorithm 2) is a 1/4-approximation algorithm for the fair
diversification problem when m = 2 that runs in time O(kn).

Connections to prior art. The idea of balancing has also been successfully applied to
matroid optimization settings subject to fairness constraints [19], and to the red-blue matching
problem [39]. However, our objective function cannot be expressed by a matroid (or an
intersection of matroids), and thus the approaches of prior work are not applicable to our
setting. Further, the algorithms and analysis are distinct for these problems; Fair-Swap
builds upon GMM while the algorithms designed in [19] employ the Edmonds algorithm for
finding a maximum independent set.

3.2 Fair-and-Diverse Selection: m ≥ 3

Basic algorithm. We start by presenting a basic algorithm that takes as input a guess γ for
the optimum fair diversity. If this guess is greater than the optimum fair diversity then the
algorithm may abort, but if the algorithm does not abort, it will return a fair diversity at
least γ/(3m− 1).

Algorithm and intuition. The approach of Fair-Flow (Algorithm 3) is to construct disjoint
sets of points C1, C2, . . . such that, if γ is at most the optimal fair diversity, it is possible to
find sets S1, . . . ,Sm of sizes k1, . . . , km such that each Ci contains at most one point from
S1 ∪ . . . ∪ Sm. If we can construct C1, C2, . . . such that for any x ∈ Ci and y ∈ Cj , then
d(x, y) ≥ d2 for some value d2 then we have div(S1 ∪ . . . ∪ Sm) ≥ d2. Furthermore, because
the sets C1, C2, . . . are disjoint it is possible to find sets S1, . . . ,Sm with the required property
via a reduction to network flow (noting that the optimal flow in a network with integer
capacities is always integral). See the algorithm for the precise reduction and see Figure 4
for an example.

The way we construct each C1, C2, . . . is to first run GMM on each color class i and use
this to identify at most k points Zi of color i such that div(Zi) ≥ d1 for some value d1 to be
determined. We then partition

⋃
i Zi into the disjoint groups C1, C2, . . . where the partition

satisfies the property that any two points x, y ∈
⋃

i Zi such that d(x, y) < d2 are in the same
group. Note that x, z will end up in the same group if there exists y such that d(x, y) < d2
and d(y, z) < d2; more generally two points can end up in the same group because of a chain
of points where each adjacent pair of points are close. However, in the analysis, we will show
that these chains cannot be too long and, for appropriately chosen d1 and d2, any two points
in Cj are distance < d1 from each other. In the analysis, this will enable us to argue that if
γ is at most the optimal fair diversity, it is possible to find the required sets S1, . . . ,Sm.
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Algorithm 3 Fair-Flow: Fair Diversification for m ≥ 3.
Input: U1, . . . ,Um: Universe of available elements

k1, . . . , km ∈ Z+
0

γ ∈ R: A guess of the optimum fair diversity
Output: ki points in Ui for i ∈ [m]

1: procedure Fair-Flow
2: for i ∈ [m] do
3: Yi ← GMM(Ui, ∅,

∑
i
ki)

4: Zi ← maximal prefix of Yi such that all points
in Zi are ≥ d1 = mγ

3m−1 apart.
5: Construct undirected graph GZ with nodes

Z =
⋃

i
Zi and edges (z1, z2), if d(z1, z2) < d2 = γ

3m−1 .
6: C1, C2, . . . Ct ← Connected components of GZ .

▷Construct flow graph
7: Construct directed graph G = (V, E) where

V = {a, u1, . . . , um, v1, . . . , vt, b}
E = {(a, ui) with capacity ki : i ∈ [m]}

∪ {(vj , b) with capacity 1 : j ∈ [t]}
∪ {(ui, vj) with capacity 1 : |Zi ∩ Cj | ≥ 1}

8: Compute max a-b flow.
9: if flow size < k =

∑
i
ki then return ∅ ▷Abort

10: else ▷max flow is k
11: ∀(ui, vj) with flow add a node in Cj with color i to S.

return S

Analysis of basic algorithm. We need a preliminary lemma that argues that all the points
in the same connected component are close together.

▶ Lemma 3. For all connected components Cj, ∀x, y ∈ Cj : d(x, y) < (m − 1)d2 and Cj

does not contain any two points of the same color.

Proof. Consider two points x, y ∈ Cj and let the length of a shortest unweighted path Px,y

between x and y in the graph be ℓ. If ℓ ≤ m − 1 then d(x, y) < (m − 1)d2 as required. If
ℓ ≥ m then there exists two points on this path (including end points) that have the same
color and this will lead to a contradiction. Consider the subpath Px′,y′ ⊂ Px,y where x′ and
y′ have the same color i and all internal nodes have distinct colors. Then the length of Px′,y′

is strictly less than md2 = mγ/(3m − 1) = d1. But this contradicts d(x′, y′) ≥ d1 for all
points in Zi. ◀

The next theorem establishes that when the algorithm does not abort, the solution
returned has diversity at least γ/(3m− 1) and that it never aborts if the guess γ is at most
the optimum diversity.

▶ Theorem 4. Let ℓ∗
fair be the optimum diversity. If γ ≤ ℓ∗

fair then the algorithm returns
a set of points of the required colors that are each ≥ γ/(3m − 1) apart. If γ > ℓ∗

fair then
the algorithm either aborts or returns a set of points of the required colors that are each
≥ d2 = γ/(3m− 1) apart.

Proof. Note that if the algorithm does not abort then all points are ≥ γ/(3m − 1) apart
since any two points in different connected components are ≥ γ/(3m− 1) apart.

Hence, it remains to argue that if γ ≤ ℓ∗
fair then the algorithm does not abort. To argue

this, we will construct a flow of size k in the network instance. And to do this it suffices
to identify ki connected components including a point from Zi for each i, such that the
resulting set of k1 + k2 + . . . + km connected components are all distinct. To do this, we start
by defining a node ui to be critical if |Zi| < k and non-critical otherwise. Let Oi ⊂ Ui be the
set of ki points in the optimum solution. For x ∈ Ui, let f(x) be the closest point Zi to x. If
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Figure 4 The graph construction in Algorithm 3 (line 7) corresponding to m = 3, k1 = 2, k2 =
1, k3 = 1. Points of color 1 are contained in C1 and C2. Points of color 2 are contained in C1, C3,

and C4. Points of color 3 are contained in C4 and C5. Note there is an a-b flow of size k1 + k2 + k3

iff it is possible to pick at most one point from each Cj while still picking at most ki points of color
i for each i ∈ [m].

ui is critical, then note that d(x, f(x)) < d1. Note that for all points x, y ∈ ∪i:criticalf(Oi),
d(x, y) > ℓ∗

fair − 2d1 ≥ γ − 2γm/(3m− 1) = (m− 1)d2 and hence, by Lemma 3, this implies
that all points in

⋃
i:critical f(Oi) are in different connected components.

We then consider each non-critical node ui in turn. Since ui was non-critical and each
connected component has at most one point in each Zi, there are k connected components
that include a point in Zi. At most k − ki need to be used to pick points of other classes
and hence at least k − (k − ki) = ki remain. ◀

Final algorithm. Our final algorithm is based on binary searching for a “good” guess γ

for the optimum diversity ℓ∗
fair where each guess can be evaluated using the basic algorithm

above. The goal is to find a guess that is close to ℓ∗
fair or larger such that the algorithm does

not abort. There are two natural ways to do this; which is best depends on parameters of
the data set.
Binary-searching over continuous range: For the first approach, note that ℓ∗

fair ∈ [dmin, dmax]
where dmin = minx,y∈U :x ̸=y d(x, y), and dmax = maxx,y∈U :x ̸=y d(x, y). Hence, there exists a
guess γ = (1 + ϵ)idmin for some i ∈ {0, 1, 2, . . . , ⌈log1+ϵ R⌉} where R := dmax/dmin such that
ℓ∗

fair/(1 + ϵ) ≤ γ ≤ ℓ∗
fair. Note that for this guess, the algorithm returns a (3m − 1)(1 + ϵ)

approximation. We can find this guess (or an even better guess, i.e., a γ > ℓ∗
fair for which the

algorithm does not abort) via a binary search over the 1 + ⌈log1+ϵ R⌉ possible guesses. The
number of trials required is O(log(1 + ⌈log1+ϵ R⌉) = O(log(ϵ−1) + log log R).
Binary-searching over discrete set: For the second approach we note that after the algorithm’s
initial step (which did not depend on the guess γ) there are only km points and hence at
most

(
km
2

)
distinct distances between remaining points. Hence, it suffices to only consider

guesses γ such that d1 or d2 corresponds to one of these O(k2m2) values. We can sort these
values in O(k2m2 log km) time and then binary search over this range to find a good guess
using O(log km) trials.
Final diversification result. Our main theorem of this section follows by combining the
binary search over a discrete set approach with the basic algorithm.

▶ Theorem 5. There is a 1
3m−1 -approximation algorithm for the fair diversity problem that

runs in time O(kn + k2m2 log(km)).

Proof. The time to construct Y1, . . . , Ym is O(kn). We then need to sort the O(k2m2)
distances amongst these points. This takes O(k2m2 log(km)) time. The time to construct
and solve the flow instance is O(k2m2) since the flow instance has O(km) nodes and O(km)
edges [40, 41]. Note that the binary search requires us to construct and solve O(log(km))
flow instances. Hence the total running time is as claimed. ◀
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Algorithm 4 Fair-GMM: Fair Diversification for small k.

Input: U1, . . . ,Um: Universe of available elements
k1, . . . , km ∈ Z+

0
Output: ki points in Ui for i ∈ [m]

1: procedure Fair-GMM
2: for i ∈ [m] do Yi ← GMM(Ui, ∅,

∑
i
ki)

3: By exhaustive search, find the sets Si ⊆ Yi for i ∈ [m] such that |Si| = ki and div(S1∪. . .∪Sm)
is maximized.

If we used the binary search over a continuous range approach, the running time would by
O(kn+k2m2(log ϵ−1 +log log dmax/dmin)) and the approximation ratio would be 1

(3m−1)(1+ϵ) .

3.3 Fair-and-Diverse Selection: Small k, m

In this section, we present a simple algorithm that has the advantage of achieving a better
approximation ratio than the algorithm in the previous section. The downside of the algorithm
is that the running time is exponential in k, specifically, O(kn + k2(em)k). However, when
m = O(1) and k = o(log n) the dominating term in the running time is O(kn), as in the case
of the algorithms from the previous sections.

Algorithm and intuition. The basic approach of Fair-GMM (Algorithm 4) is to first select
k points (or less if there are fewer than k points of a particular color) of each color via the
GMM algorithm. The resulting subset

⋃
i Yi has at most km points and this is significantly

smaller than the original set of points assuming k and m are much smaller than n. Hence, it
is feasible to solve the problem via exhaustive search on the subset of points. In the analysis,
we will be able to show that the optimal fair diversity amongst the subset of points is at
least 1/5 of the optimal fair diversity amongst

⋃
i Ui.

Analysis. To prove the approximate factor we need to show that the optimal solution
amongst the subset of points selected in step one has diversity that is not significantly smaller
than the optimal diversity of the original set of points. To show this the basic idea is that for
each i, the set Yi will contain at least one point near every color i point in the optimal solution
or will contain k points such that even if we remove any set of k−ki points to make space for
points of other colors, the remaining set of ki points of color i still has sufficiently high diversity.

▶ Theorem 6. Algorithm 4 returns a 1
5 -approximation and the running time is O(kn +

k2(em)k). Note that this is O(kn) when k = o(log n) and m = O(1).

Proof. For the running time, note that Step 1 can be implemented in O(kn) time. For Step
2, note that there are at most km points in Y1, Y2, . . . Ym so a brute force algorithm needs to
consider at most

(
km
k

)
≤ (em)k sets of points and computing the min distance for each takes

O(k2) time. Note that this is o(n) assuming k = o(log n) and m is constant.
For the approximation ratio, it suffices to argue that if ℓ∗

fair is the optimum value then
there exists a set of points amongst Y1 ∪ . . . ∪ Ym with the required colors that are ℓ∗

fair/5
apart. Let Zi be the maximal prefix of Yi such that all points at points are ≥ 2ℓ∗

fair/5 apart.
For each x ∈ Ui, let f(x) be the closest point in Zi. Call i critical if |Zi| < k. Note that if i

is critical, then d(x, f(x)) < 2ℓ∗
fair/5. Let Oi be the optimal set of color i points and consider

the subsets S1,S2, . . .Sm of points in Z1, Z2, . . . Zm defined as follows:
For all i that are critical, let Si = f(Oi) and let D = ∪i:criticalSi. Note that div(D) >

ℓ∗
fair − 4ℓ∗

fair/5 = ℓ∗
fair/5.
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1 2 3 4

Figure 5 An example with m = 2 overlapping classes, with |U1| = 3 and |U2| = 4, where
(a) the fairness constraints can be satisfied with fewer than k elements and (b) a class has to be
overrepresented to satisfy the fairness constraints for all classes. Suppose we have to pick two white
and one black element (k = 3). A feasible solution consists of two bi-colored elements, thus fewer
than k, in which the black class is represented by two and not just one element.

For each j that is not critical: Remove all points in Zj that are distance < ℓ∗
fair/5 from a

point in D. Note that at most one point in Zj is < ℓ∗
fair/5 from each point in D because

points in Zj are ≥ 2ℓ∗
fair/5 apart. Hence, at most |D| points are removed from Zj .

Process the non-critical j in arbitrary order: Pick kj points Sj arbitrarily from Zj .
Remove all points from Z that are distance < ℓ∗

fair/5 from a point in Sj . This removes
at most kj points from each Zi. Note that when we process j there are at least k −
(
∑

i:Si defined so far ki) ≥ k − (k − kj) = kj points in Zj .
Note div(

⋃
i Si) ≥ ℓ∗

fair/5 and this implies the claimed approximation factor. ◀

4 Generalizing to Overlapping Groups

In this section, we show how we can extend our algorithmic framework to allow the elements
in the universe U to belong to multiple classes, e.g., an individual may belong to multiple
demographic groups such as multiple races, or combinations of race, gender, and other
sensitive demographics. First, we formally define the problem and show how our Fair-Swap
and Fair-Flow algorithms can be adapted to support this generalized setting.

We assume a universe of elements U comprising of m possibly overlapping classes
U1,U2, . . . ,Um, a pseudometric distance function d : U × U → R+

0 and a set of fairness
constraints ⟨k1, . . . , km⟩ where each ki is a non-negative integer with ki ≤ |Ui|. Our goal is
to identify a set S ⊆ U to satisfy the fairness constraints such that the minimum distance of
any two items in S is maximized.

It will be convenient to introduce some additional notation. For any L ⊂ [m], define
XL =

( ⋂
i∈L Ui

)
∩

( ⋃
j ̸∈L Uj

)
. That is, XL consists of all elements exactly in the classes of

L and no others. Note that if we select an element in XL it contributes to helping satisfy |L|
of the fairness constraints. Hence, it may be possible to satisfy all the constraints by picking
fewer than k1 + . . . + km elements. Further, a feasible solution may require more than ki

elements for class i (example in Figure 5). Formally, we define the problem as follows:

Fair+ Max-Min : maximize
S⊆U

min
u,v∈S
u̸=v

d(u, v)

subject to |S ∩ Ui| ≥ ki, ∀i ∈ [m]

4.1 Fair-and-Diverse Selection (Overlaps): m = 2

In the binary setting, the input is a set of points U that comprises of m = 2 overlapping
classes; U1 = X{1} ∪X{1,2} and U2 = X{2} ∪X{1,2}. We design a swap-based algorithm, with
1/4-approximation guarantee, which uses the idea of binary searching over a discrete set of
guesses for the optimum fair diversity, denoted as ℓ∗

fair.

Algorithm and intuition. The Fair+-Swap algorithm (Algorithm 5) takes as input a guess
γ for the optimum fair diversity. We show that if γ ≤ ℓ∗

fair, we can always find enough points
to construct a fair set S = S{1} ∪ S{2} ∪ S{1,2} with div(S) ≥ γ/4 (where SL = S ∩XL).
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13:14 Diverse Data Selection under Fairness Constraints

The algorithm first finds as many points as possible in X{1,2} and are at least γ
4 apart

from each other. Let S{1,2} be the resulting set, with a total of t points. Note that to satisfy
the fairness constraints, we need to add ki− t points for each class i in {1, 2}. The algorithm
proceeds to remove all points in U that are closer than γ

4 from any point in S{1,2}. It is
easy to see that all remaining points, S+, can only belong to one class, i.e., S+ ∩X{1,2} = ∅
(because all points that did not make it to S{1,2} have to be closer than γ

4 from some point in
S{1,2}). Since S+ does not have overlapping classes, we can execute Fair-Swap (Algorithm 2)
on it to select a set with ki − t points for each class i in {1, 2}. In our analysis, we show that
S+ contains at least k1 − t and k2 − t points from X{1} and X{2} that are ≥ γ apart from
each other. Thus, the Fair+-Swap algorithm will produce a set of points that are at least
γ/4 apart from each other.

▶ Theorem 7. Fair+-Swap (Algorithm 5) is a polynomial-time algorithm with 1/4-
approximation guarantee for the fair diversification problem with m = 2 overlapping classes.

We provide the pseudocode for the Fair+-Swap algorithm (described above) and the
proof for Theorem 7 in Appendix A.

4.2 Fair-and-Diverse Selection (Overlaps): m ≥ 3

The algorithm in this section is an extension of Fair-Flow (Algorithm 3); the previous
algorithm did not apply in the case when classes could overlap whereas the new algorithm will.
Throughout this section, it will be convenient to use the following notation: M :=

(
m

⌊m/2⌋
)
.

The approximation factor for the algorithm designed in this section will be 3M−1 in contrast
to the 3m− 1 approximation for the non-overlapping case. Note that for m = 2, 3, 4, 5 we
have M = 2, 3, 6, 10, i.e., when the number of classes is small, M is still relatively small.

There are two main steps that need to be changed in the overlapping case: 1) defining a
subset Z of the elements that will be considered and 2) determining how many points to use
that appear in multiple classes. We discuss each in turn.

Defining Z. Recall that the first main part of Fair-Flow (Algorithm 3) was to select a
subset of points of each color such that all points in each subset was a certain distance apart.
When there are overlapping classes, we need to revisit how this is done. Motivated by the fact
that an element in XL′ contributes to at least as many fairness constraints as an element in
XL if L ⊂ L′, when we select a subset of points in Ui we want to prioritize points that are also
in other classes. For example, for m = 3 we have: (1) U1 = X{1} ∪X{1,2} ∪X{1,3} ∪X{1,2,3},
(2) U2 = X{2} ∪X{1,2} ∪X{2,3} ∪X{1,2,3}, and (3) U3 = X{3} ∪X{1,3} ∪X{2,3} ∪X{1,2,3}.

Consistent with “prioritizing points” in multiple classes, we construct subsets of U1,U2,U3
by first constructing a maximal subset Z{1,2,3} ⊂ X{1,2,3} such that the pairwise distance of
all points is at least d1. We then define a maximal subset Z{1,3} ⊂ X{1,3} such that every
point is at least d1 from each other point in Z{1,3} and from points in Z{1,2,3}. We construct
Z{1,2} and Z{2,3} similarly. Finally Z{1} is a maximal subset of X{1} such that every point
is at least d1 from each other point in Z{1} and from every point in Z{1,2} ∪Z{1,3} ∪Z{1,2,3}.
Lines 3–5 in Algorithm 6 (given in the Appendix) generalize this process to arbitrary m.

Note that we ensure the property that all points in ZL are at least d1 far from each
other and from any point in

⋃
L′:L⊂L′ ZL′ but the subset of elements picked from U1, i.e.,

Z{1}∪Z{1,2}∪Z{1,3}∪Z{1,2,3} ⊂ U1, no longer satisfies the condition that they are all at least
d1 far from one another. In particular, there may exist points x ∈ ZL and y ∈ ZL′ such that
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d(x, y) < d1 if neither L or L′ is a subset of the other.3 A natural question, and an issue that
will arise in our analysis is how many sets can there be such that no set is a subset of another.
Fortunately, the following classic result in extremal combinatorics resolves this question.

▶ Lemma 8 (Sperner’s Lemma). A collection of sets is called an anti-chain if none of the
sets is a subset of another set. If all sets are subsets of [m] then the maximum size of such a
collection is M =

(
m

⌊m/2⌋
)
.

Next, recall that Fair-Flow (Algorithm 3) then constructs a graph GZ where the nodes
are the selected points and there are edges between points if their distance is < d2. The new
algorithm proceeds similarly but with new parameters: d1 ← Mγ

3M−1 , and d2 ← γ
3M−1 . With

this setting of the parameters and appealing to Lemma 8 we prove an upper bound on the
distance between any two points in the same connected components (proof in Appendix A):

▶ Lemma 9. For all connected components Cj, ∀x, y ∈ Cj : d(x, y) < (M − 1) d2, and Cj

does not contain any two points a, b such that a ∈ XL and b ∈ XL′ where L ⊂ L′.

Guessing how much to exploit points in multiple classes. So far we have (1) discussed how
to select the subset Z of input points and (2) partitioned Z such that we have some upper
bound on the distance between any two points in the same partition. In the non-overlapping
case, we could then argue it suffices to pick at most one point in each partition and adding
this point to the output set S would increment |S ∩ Ui| for exactly one value i ∈ [m]. In the
overlapping case, however, we may need to pick a point in a partition that is in multiple
classes and would increment |S ∩ Ui| for multiple values of i.

To get the reduction to network flow to generalize to the non-overlapping case we need to
guess values cL for every non-empty set L ⊂ [m] and require that we find at least cL points
in ∩i∈LUi such that the

∑
L⊆[m] cL points returned are distinct. The fact the points need to

be distinct allows the reduction to go through. Note that to satisfy the fairness requirements
we need that

∑
L:i∈L cL ≥ ki for each i.

▶ Example 10. Suppose we require k1 = 2 points from U1 and k2 = 2 points from U2. Then
the guess c{1} = 2 and c{2} = 2 would correspond to picking at least four distinct points,
at least two from U1 and at least two from U2. In contrast, the guess c{1} = c{2} = 1, and
c{1,2} = 1 would correspond to picking at least three distinct points where at least one comes
from each of sets U1,U2,U1 ∩ U2 respectively.

There are at most k2m−1−m possible guesses4 to try for the values and at least one is
feasible since the optimal solution corresponds to some set of guesses. With a feasible set of
guesses, we then essentially treat all sets L ⊆ [m] as colors although when we need to pick
cL points of color L, it will suffice to pick points with color L′ if L is a subset of L′.

The next theorem establishes that when the algorithm does not abort, the solution
returned has diversity at least γ/(3M − 1) and that it never aborts if the guess γ is at most
the optimum diversity.

3 This is a generalization of the case when there was no-overlap. In that case there could exist x ∈ Zi

and y ∈ Zj such that d(x, y) < d1.
4 Recall that we typically consider m to be a small constant. A bound of k2m−1 is immediate because

there at most 2m − 1 quantities. A slightly tighter bound follows by noting that cL for all singleton sets
L is implied once the other values are chosen.
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▶ Theorem 11. Let ℓ∗
fair be the optimum diversity. If γ ≤ ℓ∗

fair then the algorithm returns
a set of points of the required colors that are each ≥ γ/(3M − 1) apart. If γ > ℓ∗

fair then
the algorithm either aborts or returns a set of points of the required colors that are each
≥ d2 = γ/(3M − 1) apart.

We provide the proof of Theorem 11 in Appendix A. The rest of the algorithm and
analysis follows similarly as Algorithm 3, where we binary search for γ in either a continuous
or discrete space. The running time is increased by a factor of k2m−m−1 because of the need
to guess the values {cL}L⊂[m]; thus Fair+-Flow is a polynomial-time algorithm with a

1
3( m

⌊m/2⌋)−1
-approximation guarantee.

5 Related Work

Diversity is an important principle in data selection and summarization, facility location,
recommendation systems and web search. The diversity models that have been proposed in
the literature can be organized into three main categories, (1) the distance-based models
where the goal is to minimize the similarity of the elements within a set, (2) the coverage-
based models where there exists a predetermined number of categories and the aim is to
maximize the coverage of these categories [4, 38] and (3) the novelty-based models that are
defined so as to minimize the redundancy of the elements shown to the user [10]. For further
information, we refer the reader to the related surveys [23, 24].

Max-Min and Max-Sum diversification are two of the most well studied distance-based
models [16, 28, 30, 43], and there exist efficient algorithms with strong approximation
guarantees for the unconstrained version of the problems in the offline setting (discussed
in Sections 1 and 2). The problem of diversity maximization has also been studied in the
streaming and distributed settings, where (composable) core-sets were shown to be a useful
theoretical tool [3, 12, 32], and more recently in the sliding window setting [7]. A separate
line of work focuses on designing efficient indexing schemes for result diversification [2, 22, 47];
this direction is orthogonal to our work, and it is not clear how to extend existing indexing
schemes for fair Max-Min diversification.

There is relatively little prior work on constrained diversification. The closest to our
work is fair Max-Sum diversification (discussed in Section 1) and fair k-center clustering
(discussed in Section 1 and Appendix C). To the best of our knowledge, our work is the first
to augment the traditional Max-Min objective with fairness constraints.

Prior work has also combined fairness with the determinant measure of diversity [13].
That work models fairness constraints the same way as we do, but their algorithmic framework
is entirely different. There, data is represented as vectors, and at each iteration the algorithm
identifies the item that is most orthogonal to the current vector, which gets updated with
the new item’s projection. The limitation of this method is that it can only work in high-
dimensional data (e.g., it would not work at all on one-dimensional data). Other work on
diverse set selection focused on satisfying fairness constraints while optimizing an additive
utility [45]. These methods do not apply to our setting as Max-Min is not additive. Prior
work has also examined the satisfaction of fairness constraints or preferences in specialized
settings, such as rankings [14, 48, 49]. Work in this domain focuses on specifying and
measuring fairness and augmenting ranking algorithms with fairness considerations. Related
work on diverse top-k results focuses on returning search results by a combined measure of
relevance and dissimilarity to results already produced [5, 42].
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Our fairness constraints are based on the definitions of group fairness and statistical
parity [25]. We do not pick a particular definition of fairness, and do not place particular
restrictions on the values and distribution of ⟨k1, . . . , km⟩. This model can express equal
and proportional representation, as well as any other distribution. There are other, non-
parity-based definitions of fairness that fall outside our framework. For example, individual
or causal fairness [27] examine differences in treatment of individuals from different groups
who are otherwise very similar, but these are not the focus of this work.

6 Summary and Future Directions

In this paper, we focused on the problem of diverse data selection under fairness constraints.
To the best of our knowledge, our work is the first to introduce fairness constraints to
Max-Min diversification. We studied both cases of disjoint and overlapping groups and
proposed novel polynomial algorithms with strong approximation guarantees. For the case
of disjoint groups, our algorithms have linear running time with respect to the size of the
data. Overall, our work augments in significant ways the existing literature of traditional
problems that have been studied under group fairness constraints. We discuss here some
possible directions that extend our work through the exploration of problem variants, or
intuitions towards improvement of the known algorithms and bounds.

Improved bounds. An interesting open question is whether an 1
2 approximation for Fair

Max-Min is possible, as is the case for Max-Min and fair Max-Sum diversification. In
Appendix B, we discuss the correspondence between fairness constraints and partition
matroids. It is possible that results relevant to matroids can be exploited to improve the
algorithms and bounds for the Fair Max-Min problem.

Extending the swap algorithm to the general case. Our Fair-Swap algorithm provides
a better bound compared to our Fair-Flow algorithm for the case of m = 2 ( 1

4 and 1
5

respectively). This indicates the possibility that the swap algorithm, if extended to the
general case, could perhaps result in a better bound than Fair-Flow.

Problem variants. Our algorithms aim to approximate the diversity score of the optimal
solution to Fair Max-Min, while guaranteeing the satisfaction of the fairness constraints. A
possible problem variant could explore the relaxation of the fairness constraints, and seek to
minimize their violation while guaranteeing a diversity score at least as good as the solution
to unconstrained Max-Min diversification. Another interesting future direction is to study
the fair variant of other diversity objectives proposed in the literature [16, 32], for which
there are currently no known results.
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Appendix

A Additional Algorithms and Proofs

In this section, we prove the hardness and approximation bound results for Fair Max-Min,
which are formally stated in Corollary 1. Further, we provide proofs for the theoretical results
described in Section 4. We also provide the pseudocode for the Fair+-Swap algorithm
(Algorithm 5), described in Section 4.1, and the pseudocode for the Fair+-Flow algorithm
(Algorithm 6), described in Section 4.2.

Proof of Corollary 1. First, we show that Fair Max-Min is an NP-complete problem. The
problem is clearly in NP: If we are given a solution S, we can verify that it satisfies the
fairness constraints and compute its diversity score in polynomial time. The unconstrained
version of Max-Min diversification is NP-complete [43, 46], and it is a special case of our
problem for m = 1. Since any instance of Max-Min diversification can be reduced to an
instance of Fair Max-Min with m = 1, then Fair Max-Min is also NP-complete.

Subsequently, we show that Fair Max-Min cannot be approximated with an approxima-
tion factor better than 1

2 . Suppose that there exists a polynomial algorithm that approximates
the diversity score of the optimal solution to Fair Max-Min by a factor of α > 1

2 . Then,
this algorithm could also solve the unconstrained Max-Min diversification problem with
approximation factor α. However, Ravi et al. [43] have shown that unconstrained Max-Min
diversification cannot be approximated within a factor better than 1

2 , through a reduction
from the clique problem. Therefore, it is not possible for such an algorithm to exist. ◀

Proof of Theorem 7. Let O = O{1} ∪ O{2} ∪ O{1,2} be the optimal set that maximizes
diversity and satisfies the fairness constraints. Let ℓ∗

fair = div(O), which implies that
d(o1, o2) ≥ ℓ∗

fair for any pair of optimal elements o1, o2 ∈ O. We will show that for any guess
γ ≤ ℓ∗

fair, Algorithm 5 returns a set S = S{1} ∪ S{2} ∪ S{1,2} with div(S) ≥ γ/4.
First, note that by the definition of S{1,2} set, it holds that div(S{1,2}) ≥ γ/4. Next,

notice that the S− set in line 3 of Algorithm 5 consists of all the points in X{1,2}, and all
single-colored points < γ/4 apart from some point in S{1,2}. As a result, we know that:
(1) all the points remaining in S+ = U \ S− are greater or equal than γ/4 apart from all the
points in S{1,2}, and (2) S+ only contains single-colored points (if there were any bi-colored
elements ≥ γ/4 apart from the points in S{1,2}, they would have been added to S{1,2}).

We further express S+ = S+
{1} ∪S

+
{2} with S+

{i} ⊆ X{i} for i ∈ {1, 2} and t = |S{1,2}|. We
argue that for any guess γ ≤ ℓ∗

fair, S+ contains at least ki − t elements for i ∈ {1, 2} that
are ≥ γ apart. Thus, Fair-Swap will be able to find a set of points to satisfy the fairness
constraints that are at least γ/4 apart.

Define c−
{1}, c−

{2}, c−
{1,2} to be the number of optimal points in O{1}, O{2} and O{1,2}

present in S− and notice that c−
{1} +c−

{2} +c−
{1,2} ≤ t. This holds because at most one optimal

point can be < γ/4 from a point in S{1,2}. Suppose that there exist a pair of optimal points
o1, o2 ∈ O, and a point x ∈ S{1,2} such that d(o1, x) < γ/4 and d(o2, x) < γ/4. Then we
derive a contradiction by applying the triangle inequality as: d(o1, o2) ≤ d(o1, x) + d(x, o2) <

γ/2 < ℓ∗
fair/2. Consequently, it now follows that S+ contains at least k1−c−

{1}−c−
{1,2} ≥ k1−t

optimal points of O{1}, and k2 − c−
{2} − c−

{1,2} ≥ k2 − t of O{2}, which by definition of O are
greater or equal than γ apart.

So Fair-Swap will be able to find a set S{1} ⊆ S+
{1} and S{2} ⊆ S+

{2} with the required
number of elements such that div(S{1} ∪ S{2}) ≥ γ/4. Thus, we get that div(S) ≥ γ/4. If
we perform a binary search over all the pairwise distances of the points in U , we will find a
guess γ = ℓ∗

fair, which implies the claimed approximation factor for Fair+-Swap. ◀
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Algorithm 5 Fair+-Swap: Overlapping classes for m = 2.

Input: U1,U2: Universe of available elements
γ ∈ R: A guess on the optimum fair diversity
k1, k2 ∈ Z+

0
Output: at least ki points in Ui for i ∈ {1, 2}

1: procedure Fair+-Swap
2: S{1,2} ← maximal subset of X{1,2} with all points ≥ γ/4 apart
3: S− ← all the points in U that < γ/4 apart from a point in S{1,2}
4: S+ ← U \ S− ▷S+ = S+

{1} ∪ S
+
{2} ⊆ X{1} ∪X{2}

▷Select the missing points to satisfy the constraints:
5: Set t = |S{1,2}|
6: if |S+ ∩ Ui| ≥ ki − t for i ∈ {1, 2} then
7: S{1} ∪ S{2} ←Fair-Swap(S+, k1 − t, k2 − t)
8: S ← S{1} ∪ S{2} ∪ S{1,2}
9: else

10: S ← ∅ ▷Abort
return S

Proof of Lemma 9. Consider two points x, y ∈ Cj and let the length of a shortest unweighted
path Px,y between x and y in the graph be ℓ. If ℓ ≤ M − 1 then d(x, y) < (M − 1)d2 as
required. If ℓ ≥M then by Lemma 8, there must exist two points on this path (including
end points) in XL and XL′ such that L and L′ are comparable, i.e., L is a subset of L′

or vice versa and this will lead to a contradiction. Consider the subpath Px′,y′ ⊂ Px,y

such that x′ ∈ XL and y′ ∈ XL′ for some comparable L and L′. If the internal nodes are
x1, x2, . . . and these belong to sets XL1 , XL2 , . . . then by definition of x′ and y′, the collection
of sets {L1, L2, . . . , L′} is an anti-chain and hence the size of this collection is at most M by
Lemma 8. Hence, the length of the path between x′ and y′ is also at most M and therefore
d(x′, y′) < Md2 = d1. But this contradicts d(x′, y′) ≥ d1 because x′ ∈ XL and y′ ∈ XL′

where L and L′ are comparable. ◀

Proof of Theorem 11. Note that if the algorithm does not abort then all points are ≥
γ/(3M − 1) apart since any two points in different connected components are ≥ γ/(3M − 1)
apart. Hence, it remains to argue that if γ ≤ ℓ∗

fair then the algorithm does not abort.
To argue this, we will show it is possible to construct a flow of size

∑
cL. And to do this

it suffices to, for each L ⊂ [m], identify cL different connected components that each include
a point from ∩i∈LUi. Let O =

⋃
L⊂[m] OL be an optimal solution where OL = O ∩XL and

let cL = |OL|. We will henceforth consider the iteration of the algorithm which guessed this
set of {cL}L⊂[m] values.

For every point x ∈ O, let f(x) be the closest point in Z where for all i, x ∈ Ui ⇒ f(x) ∈ Ui.
Note that this requirement ensures that if x is replaced by f(x) then all the fairness
constraints are still satisfied. By construction of Z, d(x, f(x)) < d1. Hence, for any x, y ∈ O,
d(x, y) > ℓ∗

fair− 2d1 ≥ γ− 2γM/(3M − 1) = (M − 1)d2, and hence, by Lemma 9, this implies
that all points in f(O) are in different connected components. This implies that there exist
connected components with the necessary requirements. ◀

B Fairness as a Partition Matroid

While the focus of our work is on fairness constraints in particular, our results apply in
general to any type of constraints that can be expressed in terms of a partition matroid. We
provide a brief overview of the matroid definition and show that fairness constraints can be
expressed as a partition matroid.
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Algorithm 6 Fair+-Flow: Overlapping classes for m ≥ 3.

Input: U1, . . . ,Um: Universe of available elements
cL ∈ Z+ for all L ⊂ [m]: A guess of the flow distribution
γ ∈ R: A guess of the optimum fair diversity
k1, . . . , km ∈ Z+

0
Output: at least ki points in Ui for i ∈ [m]

1: procedure Fair+-Flow
2: Define d1 ← Mγ

3M−1 and d2 ← γ
3M−1

3: Z[m] ← maximal subset of X[m] with all points ≥ d1 apart
4: for t = m− 1, m− 2, . . . , 1 do
5: for all sets of L of size t do
6: ZL ← maximal subset of XL s.t. each point in ZL is ≥ d1 from every other point in

ZL ∪
⋃

L′∈[m]:|L′|≥t+1,L⊂L′

ZL′

7: GZ ← undirected graph with nodes Z =
⋃

L⊂[m] ZL and edges (z1, z2) if d(z1, z2) < d2

8: C1, C2, . . . Ct ← Connected components of GZ

▷Construct flow graph
9: Construct directed graph G = (V, E) where

V = {a, v1, . . . , vt, b} ∪
⋃

L⊂[m]:|L|>0

{uL}

E = {(a, uL) with capacity cL : non-empty L ⊂ [m]}
∪ {(vj , b) with capacity 1 : j ∈ [t]}
∪ {(uL, vj) with capacity 1 : |ZL ∩ Cj | ≥ 1}

10: Compute max a-b flow.
11: if flow size <

∑
L⊂[m] cL then return ∅ ▷Abort

12: else
13: ∀(uL, vj) with flow add a node in Cj ∈ (∩i∈LUi) to S

return S

▶ Definition 12. A matroid M is a pair (E , I) where E is a ground set and I is a collection
of subsets of E (called independent sets). All the independent sets in I satisfy the following
properties:

If A ∈ I, then for every subset B ⊆ A, B ∈ I. (Hereditary property)
If A,B ∈ I with |A| > |B|, then ∃e ∈ A \ B such that B ∪ {e} ∈ I. (Exchange property)

A maximal independent set in I (also called a basis for a matroid) is a set for which there
is no element outside of the set that can be added so that the set still remains independent.
All maximal independent sets of a matroid have equal cardinality which is also called the
rank of the matroid, rank(M).

▶ Definition 13. A matroid M = (E , I) is a partition matroid if E can be decomposed into
m disjoint sets E1, E2, ..., Em and I is defined as I = {S ⊆ E : |S ∩ Ei| ≤ ki ∀ i ∈ [m]}.

Note that a maximal independent set (or a basis) for a partition matroid is an independent
set that satisfies all the cardinality constraints with equality. For further information on
matroids, we refer the interested reader to [44]. Based on the definitions above, in Fair
Max-Min the ground set is the universe of elements U =

⋃m
i=1 Ui. Then Fair Max-Min can

be expressed as searching for the maximal independent set of the partition matroid defined
over U that maximizes the Max-Min diversity function.
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C Results on fair k-center clustering

In this paper, our primary focus has been on fair diversification based on the Max-Min
objective. However, as we discussed in Section 1, fair k-center clustering is a closely-related
problem. In this section, we formally define k-center clustering, introduce its fair variant and
discuss the known approximation results. We then explore how algorithms and intuitions
from our work on fair Max-Min diversification can be adapted towards the fair k-center
clustering problem to achieve a constant factor 3-approximation.

The k-center and fair k-center clustering problems. The objective of k-center clustering
is to identify k cluster centers, such that the maximum distance of any point in the universe
of elements U from its closest cluster center is minimized. This maximum distance is referred
to as the clustering radius. More formally, given a distance metric d, k-center clustering
is expressed by the following minimization problem: minimize

S⊆U,|S|=k
maxu∈U d(u,S), where

d(u,S) = mins∈S d(u, s). Note that this objective does not preclude cluster centers from
being close to each other, and in fact an optimal solution to k-center clustering could be
arbitrarily bad for Max-Min diversification.

Algorithms and approximations. Just like Max-Min diversification, k-center clustering is
NP-complete. The greedy approximation algorithm proposed by Gonzalez [29] is essentially
equivalent to GMM (Algorithm 1) and provides a 2-approximation with linear running time.

Notably, there is recent work that augments the problem with fairness constraints [35]:
Given m non-overlapping classes in U = ∪m

i=1Ui and non-negative integers ⟨k1, . . . , km⟩,
the goal is to derive a set of cluster centers S, such that |S ∩ Ui| = ki. The fair k-center
clustering problem can also be expressed by a partition matroid, for which Chen et al. [17]
provide a 3-approximation with a quadratic runtime. Kleindessner et al. [35] provide a
linear-time 5-approximation algorithm for the case of two classes (m = 2), and a linear-time(
3 · 2m−1 − 1

)
-approximation for the general case, a result recently improved to 3(1 + ϵ) by

Chiplunkar et al. [20] and to 3-approximation by Jones et al. [33]. In Section C.1, we adapt
the flow algorithm for fair Max-Min diversification, and provide a linear-time 3-approximation
for fair k-center clustering. (noting that the three results were derived independently.)

C.1 Fair k-center clustering
We show how we can adapt our Fair-Flow algorithm (Algorithm 3) and design a constant
factor 3-approximation for fair k-center clustering with linear running time.

Basic algorithm. We start by presenting a basic algorithm that takes as input a guess γ

for the optimum fair clustering radius. If this guess is less than the optimum fair clustering
radius r∗

fair then the algorithm may abort but otherwise it will return a fair clustering with
radius at most 3γ.

Algorithm and intuition. The basic idea behind Fair-Flow-Clust (Algorithm 7) is to
construct a set of points Y = {y1, . . . , yt} where all distances between these points are > 2γ

apart and all points not in this set are ≤ 2γ from some point in Y ; this can be done via
the GMM algorithm (lines 2 and 7). The fact that each pair is > 2γ apart implies that any
k-center clustering, fair or otherwise, with covering radius ≤ γ has the property that at least
one center must be within a distance γ from each yi and that no center is within distance γ

of two points yi, yj since, by appealing to the triangle inequality, this would violate the fact
that d(yi, yj) > 2γ.
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Algorithm 7 Fair-Flow-Clust: Fair k-Center Clustering.

Input: U1, . . . ,Um: Universe of available elements
k1, . . . , km ∈ Z+

γ ∈ R: A guess of optimum fair clustering radius.
Output: ki points in Ui for each i ∈ [m]

1: procedure Fair-Flow-Clust
2: Y = {y1, . . . , yk+1} ← GMM(U , ∅, k + 1)
3: for j ∈ [k] do
4: Dj ← {argminx∈Ui

d(x, yj) : i ∈ [m]}
5: if d(yk+1, {y1, . . . , yk}) > 2γ then return ∅ ▷Abort
6: else
7: Y = {y1, . . . , yt} with minimum t ≤ k such that

d(yt+1, {y1, . . . , yt}) ≤ 2γ

8: for j ∈ [t] do
9: Cj ← {x ∈ Dj : d(x, yj) ≤ γ}

▷Construct flow graph
10: Construct directed graph G = (V, E) where

V = {a, u1, . . . , um, v1, . . . , vt, b}
E = {(a, ui) with capacity ki : i ∈ [m]}

∪ {(vj , b) with capacity 1 : j ∈ [t]}
∪ {(ui, vj) with capacity 1 : |Zi ∩ Cj | ≥ 1}

11: Compute max a-b flow.
12: if flow size < t then return ∅ ▷Abort
13: else ▷max flow is t

14: ∀(ui, vj) with flow add a node in Cj with color i to S
return S

The algorithm constructs a sets C1, . . . , Ct such that we will be able to argue that if we
can pick a fair set of cluster centers from C1∪ . . .∪Ct such that exactly one point is picked in
each Cj then we get a clustering with cluster radius 3γ. Furthermore, if γ ≥ r∗

fair, such a set
of centers can be proven to exist. We will then be able to find these centers via a reduction to
network flow. The network constructed is the same as in Algorithm 3 although the Cj sets in
that algorithm are constructed differently. The only difference is that because we need exactly
one point in each of C1, C2, . . . , Ct, we need to find a flow of size t rather than a flow of size
k. Note that if we are able to construct a flow of t ≤ k, we can arbitrarily add the cluster
centers missing from a class i ∈ [m] without affecting the clustering radius of the solution.

▶ Theorem 14. If γ ≥ r∗
fair then the above algorithm returns a fair clustering with radius

at most 3γ. If γ < r∗
fair then either the algorithm aborts or it returns a fair clustering with

radius at most 3γ.

Proof. Note that if the algorithm does not abort, the algorithm identifies exactly one point
in each of the disjoint sets C1, . . . , Ct such that at most ki points of color i are chosen for
each color i ∈ [m]. Since the algorithm did not abort at Step 3 we know that all points in U
are within distance 2γ of some point yi and hence at most distance 2γ + γ from the selected
point in Ci. Hence, we return a fair clustering with covering radius at most 3γ as required.
It remains to show that if γ ≥ r∗

fair then the algorithm does not abort. The algorithm does
not abort at line 5 since this would imply there exist k + 1 points that are > 2γ from each
other and this implies r∗

fair > γ. Define Ej = {x : d(x, yj) ≤ γ} and note that the optimum
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solution must pick a point in each Ej since otherwise yj is not covered within distance γ.
Hence, we know it is possible to pick at most kj points of color j such that exactly one point
cj is picked in each Ej . Note that Ej has a point of color i iff Cj has a point of color i.
Hence, it is also possible to pick at most ki points of color i (for each i ∈ [m]) such that
exactly one point cj is picked in each Cj . Hence, there exists a flow of size t where (ui, vj)
has flow 1 iff cj has color i and all edges into b are saturated. ◀

Final algorithm. We now proceed as in the case of Fair-Flow (Section 3.2): we can either
binary search for the good γ over the continuous range [dmin, dmax] or over the discrete
set of all distances between points in Y ∪D1 ∪D2 ∪ . . . ∪Dm. In the first case, we need
O(log log1+ϵ dmax/dmin) instantiations of the basic algorithm before we find a clustering with
approximation ratio 3(1 + ϵ). In the second case, we need to sort O(k2m2) distances and
then need O(log k) instantiations.

▶ Theorem 15. There is a 3-approximation for fair k-center clustering with running time
O(kn + m2k2 log k).

Proof. Note that Y and D1, D2, . . . , Dm can be computed in O(kn) time. The flow instance
has O(k) nodes and O(mk) edges. Hence, it can be solved in O(mk2) time [40, 41]. The
total running time is therefore O(kn + m2k2 log k + mk2 log k) as required. ◀
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