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Abstract
This paper studies how to minimize the total cost of answering r queries over n elements in an
online manner (i.e., the next query is given only after the previous query’s result is ready) when the
value r ≤ n is unknown in advance. Traditional indexing, which first builds a complete index on
the n elements before answering queries, may be unsuitable because the index’s construction time
– usually Ω(n log n) – can become the performance bottleneck. In contrast, for many problems, a
lower bound of Ω(n log(1 + r)) holds on the total cost of r queries for every r ∈ [1, n]. Matching
this lower bound is a primary objective of deferred data structuring (DDS), also known as database
cracking in the system community. For a wide class of problems, we present generic reductions
to convert traditional indexes into DDS algorithms that match the lower bound for a long range
of r. For a decomposable problem, if a data structure can be built in O(n log n) time and has
Q(n) query search time, our reduction yields an algorithm that runs in O(n log(1 + r)) time for all
r ≤ n log n

Q(n) , where the upper bound n log n
Q(n) is asymptotically the best possible under mild constraints.

In particular, if Q(n) = O(log n), then the O(n log(1 + r))-time guarantee extends to all r ≤ n, with
which we optimally settle a large variety of DDS problems. Our results can be generalized to a class
of “spectrum indexable problems”, which subsumes the class of decomposable problems.
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1 Introduction

Traditional indexing first creates an index on the whole dataset before starting to answer
queries. For example, after building a binary search tree (BST) on an (unsorted) set S of
n real values in O(n log n) time, we can use the tree to answer each predecessor query1 in
O(log n) time. This paradigm, however, falls short when the dataset S will only be searched
a small number of times. In the extreme, if only one query needs to be answered, the best
approach is to scan S in full, which requires only O(n) time. More generally, if we are to
answer r queries in an online manner – that is, the next query is given after the result of the
previous query has been output – it is possible to pay a total cost of O(n log(1 + r)) [19].
When r ≪ n (e.g., r = polylog n or 2

√
log n), the cost O(n log(1 + r)) breaks the barrier of

Ω(n log n), suggesting that sorting is unnecessary.
Situations like the above occur in many big-data applications where large volumes of data

are collected but only sparingly queried. The phenomenon has motivated a line of research
under the name database cracking in the system community; see [12, 13, 16–18,23, 29, 31, 32]
and the references therein. In these environments, the problem size n is huge such that even
sorting is considered expensive and should be avoided as much as possible. Furthermore, it is

1 Given a search value q, a predecessor query returns the largest element in S that does not exceed q.
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10:2 Maximizing the Optimality Streak of Deferred Data Structuring

impossible to predict how many queries – namely, the integer r mentioned earlier – will need
to be supported. Instead of constructing a complete index right away, database cracking
carries out only a calculated portion of the construction during each query. If r eventually
reaches a certain threshold, the index will be created in full, but it is more likely that r

will stop at some value significantly lower than that threshold. The challenge of database
cracking is to ensure “smoothness”: as r grows, the total cost of all the r queries so far ought
to increase as slowly as possible.

In the theory field, the data-structure problems at the core of database cracking had
already been studied in 1988 by Karp, Motwani, and Raghavan [19] under the name deferred
data structuring (DDS). For a selection of problems, they explained how to answer r ∈ [1, n]
queries on n elements with a total cost of O(n log(1 + r)), without knowing r in advance. For
every r ∈ [1, n], they proved a matching lower bound of Ω(n log(1 + r)) on those problems.
Through reductions, the same lower bound has been shown to hold on many other DDS
problems.

This work explores the following topic: how to design a generic reduction that, given
a (conventional) data structure, can turn it automatically into an efficient DDS algorithm?
Such reductions may significantly simplify the design of DDS algorithms and shed new light
on the intricate connections between traditional indexing and DDS.

Math Conventions. We use N+ to denote the set of positive integers. For any integer
x ≥ 1, let [x] represent the set {1, 2, ..., x}. Every logarithm has base 2 by default. Define
Log(x) = log(1 + x) for any x ≥ 1.

1.1 Problem Definitions
This subsection will formalize the problems to be investigated. Let S, called the dataset,
be a set of n elements drawn from a domain D. Let Q be a (possibly infinite) set where
the elements are called predicates. Given a predicate q ∈ Q, a query issued on S returns an
answer, represented as Ansq(S). We consider that, for any q ∈ Q, the answer Ansq(S) can
be represented using O(1) words and can be computed in O(n) time (which essentially means
that the query can be answered using a brute-force algorithm such as exhaustive scan).

Deferred Data Structuring (DDS). We now formalize the DDS problem. Initially, an
algorithm A is provided with the dataset S in an array, where the elements are arbitrarily
permuted. An adversary first chooses a predicate q1 for the first query, and solicits the
answer Ansq1(S) from A. Iteratively, for each i ≥ 2, after the answer of the (i − 1)-th query
has been obtained, the adversary either decides to terminate the whole process, or chooses
the predicate qi for the next query and solicits Ansqi

(S) from A. The adversary is permitted
to observe the execution of A and, thus, capable of selecting a “bad” qi for A.

The algorithm A is said to guarantee running time Time(n, r) for t queries if, for every
r ≤ t, the first r queries are processed with a total cost at most Time(n, r). We will
concentrate on t ≤ n because this is the scenario important for database cracking.

Streak of Optimality. While the above setup is “standard” for DDS, as far as database
cracking is concerned, it makes sense to carry out investigation from another fresh perspective.
As database cracking is useful mainly in the scenario where the dataset receives relatively
few queries, it is imperative to design DDS algorithms that are particularly efficient when
the number of queries is small.
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To formalize the notion of “particularly efficient”, we leverage the fact that, for many
DDS problems (including the ones considered in this work), there exist hardness barriers
dictating Time(n, r) = Ω(n Log r) for every r ∈ [1, n] under a relevant computation model.
Motivated by this, we say that an algorithm A guarantees a log(r)-streak of LogStreak(n)
if its running time satisfies Time(n, r) = O(n Log r) for all r ≤ LogStreak(n).

The worst log(r)-streak guarantee is LogStreak(n) = O(1) – this is trivial because any
query can be answered in O(n) time. Ideally, we would like to have LogStreak(n) = n,
but this is not always possible as argued later in the paper. For practical use, however, it
would suffice for an algorithm to ensure LogStreak(n) = Ω(nϵ) for some constant ϵ > 0
because Ω(nϵ) queries are perhaps already too many for database cracking to be appealing.

Classes of Problems. The above definition framework can be specialized into various
problem instances that differ in the data domain D or the predicate domain Q. Next, we
introduce two problem classes relevant to our discussion:

A problem instance is decomposable if, for any disjoint sets S1, S2 ⊆ D and any predicate
q ∈ Q, it is possible to derive Ansq(S1 ∪ S2) from Ansq(S1) and Ansq(S2) in constant
time.
We define a problem instance to be (B(n), Q(n)) spectrum indexable if the following
property holds on every dataset S ⊆ D: for every integer s ∈ [|S|], it is possible to
construct a data structure on S in O(|S| · B(s)) time that can answer any query in
O( |S|

s · Q(s)) time. The term “spectrum indexable” is chosen to reflect the ability to build
a “good” index structure – as far as functions B(n) and Q(n) are concerned – for the
whole spectrum of the parameter s.

Two observations are important about the above definitions:
(B(n), Q(n)) spectrum indexability implies that we can build a data structure on any
dataset S ⊆ D in O(|S| · B(|S|)) time to answer a query in O(Q(|S|)) time (for this
purpose, simply set s = |S|).
Consider any decomposable problem instance with the following property: for any dataset
S ⊆ D, we can build a data structure T in O(|S| · B(|S|)) time to answer a query in
O(Q(|S|)) time. Then, the problem instance must be (B(n), Q(n)) spectrum indexable.
To see why, given an integer s ∈ [|S|], divide S arbitrarily into m = ⌈|S|/s⌉ disjoint
subsets S1, S2, ..., Sm where all subsets have size s except Sm. For each i ∈ [m], create
a structure T (Si) in O(|Si| · B(s)) time; the total time to create all the m structures
is O(m · s · B(s)) = O(|S| · B(s)). To answer a query q, simply search every T (Si) to
obtain Ansq(Si) in O(Q(s)) time and then combine Ansq(S1), Ansq(S2), ..., Ansq(Sm)
into Ansq(S) using O(m) time. The total query time is therefore O(m · Q(s)).

1.2 Related Work
Motwani and Raghavan introduced the concept of DDS in a conference paper [24], which
together with Karp they extended into a journal article [19]. The article [19] presented
algorithms for the following DDS problems:

Predecessor search, where S consists of n real values, and each query is given an arbitrary
value q and returns the predecessor of q in S.
Halfplane containment, where S consists of n halfplanes in R2, and each query is given
an arbitrary point q ∈ R2 and returns whether q is covered by all the halfplanes in S.
Convex hull containment, where S consists of n points in R2, and each query is given an
arbitrary point q ∈ R2 and returns whether q is covered by the convex hull of S.

ICDT 2025



10:4 Maximizing the Optimality Streak of Deferred Data Structuring

2D linear programming, where S consists of n halfplanes in R2, and each query is given
a 2D vector u and returns the point p in the intersection of all the n halfplanes that
maximizes the dot product u · p.
Orthogonal range counting, where S consists of n points in Rd with the dimensionality d

being a fixed constant, and a query is a given an arbitrary d-rectangle q – namely, an
axis-parallel box the form [x1, y1] × [x2, y2] × ... × [xd, yd] – and returns the number of
points of S that are covered by q.

For the first four problems, Karp, Motwani, and Raghavan presented algorithms achieving
Time(n, r) = O(n Log r) for all r ≤ n. For orthogonal range counting, they presented two
algorithms, the first of which ensures Time(n, r) = O(n Logd r) for all r ≤ n, whereas the
other one ensures Time(n, r) = O(n log n + n Logd−1 r) for all r ≤ n. For all these problems,
they proved that, under the comparison model and/or the algebraic model, the running time
of any algorithm must satisfy Time(n, r) = Ω(n Log r) for every r ∈ [1, n].

Aggarwal and Raghavan [1] presented a DDS algorithm with Time(n, r) = O(n Log r)
for all r ≤ n for nearest neighbor search, where S consists of n points in R2, and a query is
given an arbitrary point q ∈ R2 and returns the point in S closest to q. This running time is
optimal under the algebraic model for all r ≤ n.

A “success story” can be told about DDS on range median. In the problem’s offline
version, we are given a set S of n real values in an (unsorted) array A. For any 1 ≤ x ≤ y ≤ n,
let A[x : y] represent the set of elements {A[x], A[x + 1], ..., A[y]}. In addition, we are given r

integer pairs (x1, y1), (x2, y2), ..., (xr, yr) such that 1 ≤ xi ≤ yi ≤ n for each i ∈ [n]. The goal
is to find the median of the set A[xi : yi] for all i ∈ [r]. In [15], Har-Peled and Muthukrishnan
explained how to solve the problem in O(n Log r + r log n · Log r) time and proved a lower
bound of Ω(n Log r) under the comparison model for all r ≤ n. In [11] (see also [5]), Gfeller
and Sanders considered the problem’s DDS version, where S is as defined earlier, and a
query is given an arbitrary pair (x, y) with 1 ≤ x ≤ y ≤ n and returns the median of A[x : y].
They designed an algorithm achieving Time(n, r) = O(n Log r) for all r ≤ n. It is easy to
see that any DDS algorithm can be utilized to solve also the offline problem in Time(n, r)
time. Hence, the algorithm of Gfeller and Sanders improves the offline solution of [15] and is
optimal (for DDS) under the comparison model.

More remotely related to our work is [8], where Ching, Mehlhorn, and Smid considered
a dynamic DDS problem where, besides queries, an algorithm is also required to support
updates on the dataset S. Towards another direction, Barbay et al. [2] studied the DDS
version of predecessor search but analyzed their algorithm using more fine-grained parameters
called “gaps” (rather than using only n and r). This direction has also been extended to
dynamic DDS; see the recent works [26,27].

As mentioned, DDS has been extensively studied in the system community under the
name database cracking. The focus there is to engineer efficient heuristics to accelerate
query workloads encountered in various practical scenarios, rather than establishing strong
theoretical guarantees. Interested readers may refer to the representative works of [12,13,16–
18,23,31,32] as entry points into the literature.

1.3 Our Results
Our main result is a generic reduction with the following guarantee:

▶ Theorem 1. Suppose that B(n) and Q(n) are non-decreasing functions such that
B(n) = O(log n) and Q(n) = O(n1−ϵ) where ϵ > 0 is an arbitrarily small constant. Every
(B(n), Q(n)) spectrum indexable problem admits a DDS algorithm with
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LogStreak(n) = min
{

n,
c · n log n

Q(n)

}
(1)

for an arbitrarily large constant c, namely, the algorithm achieves Time(n, r) = O(n · Log r)
for all r ≤ min{n, c·n log n

Q(n) }.

Under mild constraints, the streak bound in (1) is the best possible, as we argue in
Section 3. As an important special case, when Q(n) = O(log n), the DDS algorithm produced
by our reduction achieves LogStreak(n) = n, namely, Time(n, r) = O(n · Log r) for all
r ≤ n. For many decomposable problems with high importance to database systems, data
structures with O(n log n) construction time and O(log n) search time are already known (e.g.,
predecessor search and nearest neighbor search). As such problems must be (Log n, Log n)
spectrum indexable (as explained in Section 1.1), Theorem 1 immediately produces excellent
solutions to the DDS versions of all those problems, which are usually optimally under the
comparison/algebraic model. A selection of those problems will be given in Section 4.1.

Theorem 1 has a pleasant message for database cracking: even data structures with slow
query time can be useful for cracking! For example, for orthogonal range counting (defined
in Section 1.2) in 2D space, the kd-tree, which takes O(n log n) time to build, answers a
query in Q(n) = O(

√
n) time. Theorem 1 shows that the structure can be utilized to answer

any r = O(
√

n log n) queries in O(n Log r) time, which is probably more than enough for
database cracking in reality. This nicely manifests our motivation (stated in Section 1.1) for
studying “DDS algorithms particularly efficient for small r”.

Theorem 1 has an instructive implication to the design of DDS algorithms – we should
study how spectrum indexable the underlying problem really is. Exploration in this direction
can get fairly interesting, as we will demonstrate in Section 4.2 for halfplane containment,
convex hull containment, range median, and 2D linear programming (see Section 1.2 for their
definitions). We can prove that each of those problems is (Log n, Q(n)) spectrum indexable
for an appropriately selected function Q(n), and then leverage Theorem 1 to obtain an
algorithm solving it with Time(n, r) = O(n Log r) for all r ≤ n.

What happens to structures that take ω(n log n) time to build, or equivalently, B(n) =
ω(log n)? Section 5 will show that, under mild constraints, no generic reductions can use such
a structure to obtain DDS algorithms with LogStreak(n) = ω(1). In other words, these
algorithms can achieve Time(n, r) = O(n Log r) only in the trivial scenario where r = O(1).
Nevertheless, if one accepts algorithms with guarantees of the form “Time(n, r) ≤ n LogO(1) r

for all r ≤ n”, our reduction underlying Theorem 1 can be extended to produce such algorithms
as long as B(n) and Q(n) are LogO(1) n, as will be discussed in Section 5.

2 Warm Up: Predecessor Search

Predecessor search is the problem that has received the most attention from the DDS and
database-cracking communities. This section will review two approaches developed in [19]
for achieving Time(n, r) = O(n Log r) on this problem. These approaches form the basis of
nearly all the existing DDS algorithms.

Bottom-Up. Recall that the dataset S consists of n real values. We assume, w.l.o.g., that
n is a power of 2. At all times, the set S is arbitrarily partitioned into disjoint subsets –
referred to as runs – each having the same size s = 2i for some i ≥ 0. Every run is sorted
and stored in an array. Initially, s = 1, i.e., a run contains an individual element of S. Over
time, the run size s increases monotonically. Whenever s needs to go from 2i to 2j for some
value j > i, an overhaul is carried out to build the new runs. As a run of size 2j can be

ICDT 2025



10:6 Maximizing the Optimality Streak of Deferred Data Structuring

obtained by merging 2j−i runs of size 2i in O(2i · (j − i)) time, the overhaul can be completed
in O(n · (j − i)) time. Therefore, if the current run size is s, the overall cost of producing all
the runs in history is O(n Log s).

A (predecessor) query is answered simply by performing binary search on every run.
To control the cost, however, the algorithm makes sure that the current size s is at least
i Log i before processing the i-th (i ≥ 1) query. If the condition is not met, an overhaul
is invoked to increase s to the nearest power of 2 at least i Log i. After that, the query
entails a cost of O(n

s Log s) = O( n
i Log i · log(i Log i)) = O(n/i) time. If we add this up

for all r queries, the sum becomes O(n
∑r

i=1
1
i ) = O(n Log r). As the final run size s is

O(r Log r), we can conclude that the algorithm processes r queries in O(n Log r) time. Note
that this holds only if r Log r ≤ n (the maximize run size is n). However, when r has reached
⌈n/ log n⌉, the algorithm can afford to sort the entire S in O(n log n) = O(n log r) time and
answer every subsequent query in O(log n) = O(log r) time. Thus, the algorithm achieves
Time(n, r) = O(n Log r) for all r ≤ n.

Top-Down. This approach mimics the following strategy for building a binary search tree
(BST) T on S: (i) find the median of S, and splits S into S1 and S2 at the median; (ii) store
the median as the root’s key, and then build the root’s left (resp., right) subtree recursively
on S1 (resp., S2). Rather than doing a full construction outright, the algorithm builds T on
an “as-needed” basis during query processing.

In the beginning, only the root exists and it is put in the unexpanded mode. In general,
an unexpanded node u has no children yet, but is associated with the subset Su ⊆ S of
elements that ought to be stored in its subtree. A query is answered in the same manner
as in a normal BST, by traversing a root-to-leaf path π of T . The main difference is that
as the search comes to an unexpanded node u on π, the algorithm must expand it first. If
|Su| ≥ 2, expanding u means creating two child nodes for u, splitting Su at the median (the
key of u), dividing Su at the median into two parts, and associating each part with a child.
After that, u becomes expanded with its children put in the unexpanded mode. If, on the
other hand, |Su| = 1, expanding u simply means making u a leaf of T and marking u in the
expanded mode. In any case, the expansion takes O(|Su|) time (finding the median of a set
takes linear time [4]).

After r queries, the BST T is partially built because only the nodes on the r root-to-leaf
paths traversed during query processing are expanded. The nodes at the first Log r levels2

can incur a total expansion cost of O(n Log r). For each root-to-leaf path π, the node u

at level Log r has expansion cost O(n/r), which dominates the total expansion cost of the
descendants of u on π. Therefore, other than the nodes at the first Log r levels, all the other
nodes in T have an expansion cost of r · O(n

r ) = O(n) in total. The algorithm therefore
achieves Time(n, r) = O(n Log r) for all r ≤ n.

3 Reductions from Data Structures to DDS Algorithms

Section 3.1 will extend the bottom-up approach (reviewed in the previous section) into a
generic reduction, which can yield DDS algorithms with large log(r)-streak bounds, provided
that a crucial requirement – linear mergeability (to be defined shortly) – is met. Although
this reduction will be superseded by our final reduction (presented in Section 3.2) underneath
Theorem 1, its discussion (i) deepens the reader’s understanding of the approach’s power

2 The level of a node is the number of edges on the path from the node to the root.
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and limitations, and (ii) elucidates the necessity for new ideas in the absence of linear
mergeability. Finally, Section 3.3 will establish a hardness result to show that the streak
bound in Theorem 1 can no longer be improved significantly.

3.1 The First Reduction: Generalizing the Bottom-Up Approach
This subsection will focus on decomposable problems. For any dataset S ⊆ D, we assume the
existence of a data structure T (S) that can answer any query in O(Q(n)) time. Furthermore,
the structure is linearly mergeable, namely, for any disjoint S1, S2 ⊆ D, the structure on
S1 ∪ S2 can be constructed from T (S1) and T (S2) in O(|S1| + |S2|) time. Note that this
implies T (S) can be built in O(n log n) time.

▶ Lemma 2. For a decomposable problem on which there is a linear-mergeable structure with
query time Q(n) = O(n1−ϵ) where ϵ > 0 is a constant, we can design a DDS algorithm to
guarantee LogStreak(n) = min{n, c·n log n

Q(n) } for an arbitrarily large constant c.

Proof. We assume, w.l.o.g., that n is a power of 2. As with the bottom-up approach, at any
moment, we divide S arbitrarily into runs with the same size s = 2i for some i ≥ 0. For each
run, build a structure on the elements therein. The initial run size s is 1. Every time s grows
from 2i to 2j for some value j > i, an overhaul is performed to construct the runs of size 2j .
By linear mergeability, we can build the structure of a size-2j run by merging the structures
of 2j−i runs of size 2i in O(2j · (j − i)) time. By an analysis similar to the one in Section 2,
if the current run size is s, the overall cost of producing the structures for all the runs that
ever appeared in history is O(n Log s).

A query with predicate q is answered by searching the structure of every run, and then
combining the answers from all the runs into Ansq(S). The query cost is O( n

s · Q(s)). We
require that, before answering the i-th (i ≥ 1) query, the run size s must satisfy

Q(s)/s ≤ 1/i. (2)

If this requirement is not met, we launch an overhaul to increase s to the least power of 2
fulfilling (2). This ensures that the i-th query is answered with a cost O(n/i). Hence, the
total cost of processing r queries is O(n Log r).

What remains is to bound the cost of the overhauls. The final run size s is the least
power of 2 satisfying

s ≤ n (the run size cannot exceed n) and
s/Q(s) ≥ r (because of (2)).

Rather than solving s precisely, we instead aim to find an upper bound for it. As Q(s) =
O(s1−ϵ), we know Q(s) ≤ α · s1−ϵ for some constant α > 0. Hence, s/Q(s) ≥ sϵ/α. Let ŝ be
the least power of 2 satisfying

ŝ ≤ n and ŝϵ/α ≥ r.

Since the condition sϵ/α ≥ r implies s/Q(s) ≥ r, it holds that ŝ ≥ s.
The condition ŝϵ/α ≥ r can be rewritten as ŝ ≥ (α · r)1/ϵ. Therefore, if (α · r)1/ϵ ≤ n/2,

then ŝ is simply the least power of 2 at least (α · r)1/ϵ. This means ŝ = O(r1/ϵ) and thus
O(Log s) = O(Log ŝ) = O(Log r), in which case all the overhauls require O(n Log s) =
O(n Log r) time overall.

The above argument does not work if (α ·r)1/ϵ > n/2. However, in this case, r > nϵ/(2ϵα),
that is, r is already a polynomial of n. This motivates the following brute-force strategy.
When r reaches ⌈nϵ/(2ϵα)⌉ – a moment we call the snapping point – we simply create
a structure on the whole S in O(n log n) = O(n log r) time, and use it to answer every

ICDT 2025



10:8 Maximizing the Optimality Streak of Deferred Data Structuring

subsequent query in O(Q(n)) time until r = min{n, c·n log n
Q(n) }. All the queries after the

snapping point have a total cost of O(n log n) = O(n log r). We thus have obtained an
algorithm that guarantees Time(n, r) = O(n Log r) for all r ≤ min{n, c·n log n

Q(n) }. ◀

The above reduction crucially relies on the fact that the structure T is linearly mergeable.
Otherwise, the overhaul for creating size-2i runs would become Ω(n · log(2i)), in which case
all the overhauls would end up with a total cost of Ω(n · Log2 r). Next, we will present
another reduction that can shave a Log r factor.

3.2 The Second Reduction: No Linear Mergeability
We will now drop the linear mergeability requirement in Section 3.1 and establish Theorem 1.
Recall that the underlying problem is (B(n), Q(n)) spectrum indexable with B(n) = O(log n)
and Q(n) = O(n1−ϵ) for some constant ϵ > 0. The goal is to design an algorithm with
Time(n, r) = O(n Log r) for all r ≤ min{n, c·n log n

Q(n) }, where c > 0 can be any constant.
Assume, w.l.o.g., that n is a power of 2. Our algorithm executes in epochs. At the

beginning of the i-th (i ≥ 1) epoch, we set

s = 22i

.

For now, let us consider that s does not exceed n, a condition that will be guaranteed, as
discussed later. The epoch starts by creating a structure T – the structure promised by
(B(n), Q(n)) spectrum indexability – on S in O(n · B(s)) time. The structure allows us to
answer any query in O(n

s · Q(s)) time. The i-th epoch finishes after ⌈s/Q(s)⌉ queries3 are
answered during the epoch. These queries demand a total cost of⌈

s

Q(s)

⌉
· O

(n

s
· Q(s)

)
= O(n).

It is clear from the above that the total computation time of the i-th epoch is O(n·B(s)) =
O(n · 2i). As n · 2i doubles when i increases by 1, the overall cost of answering r queries is
O(n · 2h), where h is the number of epochs needed. Precisely, the value of h is the smallest
integer x ≥ 1 satisfying two conditions:

C1: 22x ≤ n (the value of s must not exceed n);
C2:

∑x
i=1

⌈
22i

Q(22i )

⌉
≥ r (the number of queries that can be answered by h epochs must

be at least r).

Rather than solving h precisely, we aim to find an upper bound for it. Define ĥ to be the
smallest integer x ≥ 1 satisfying

C1’: 22x ≤ n (same as C1);
C2’: 22x

/Q(22x) ≥ r.
It is clear that ĥ ≥ h.

Still, we do not solve ĥ precisely but instead will find an upper bound for it. For this
purpose, we leverage the fact that Q(n) = O(n1−ϵ), which means Q(n) ≤ α · n1−ϵ for some
constant α > 0. Define H to be the smallest integer x ≥ 1 satisfying

C1”: 22x ≤ n (same as C1 and C1’);
C2”: 22x

α·(22x )1−ϵ = (22x
)ϵ

α ≥ r, or equivalently, 22x ≥ (α · r)1/ϵ.

3 In practice, our algorithm may be slightly improved by making this number ⌈s · B(s)/Q(s)⌉, but this
will not be necessary for the purpose of proving Theorem 1
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Because condition C2” implies condition C2’, we must have H ≥ ĥ ≥ h.
Therefore, if (α · r)2/ϵ ≤

√
n (namely, r ≤ nϵ/4/α), the value of H is simply the least

integer x ≥ 1 satisfying 22x ≥ (α · r)1/ϵ. This means

22H−1
< (α · r)1/ϵ ⇔ 22H

< (α · r)2/ϵ

⇒ 2H = O(Log r). (3)

In this case, all epochs incur a total cost of O(n · 2h) = O(n · 2H), which is O(n Log r) by (3).
The above argument does not work if (α · r)2/ϵ >

√
n. However, when this happens,

we must have r > nϵ/4/α. As soon as r reaches ⌈nϵ/4/α⌉ – the snapping point – we create
a structure T on the whole S in O(n log n) = O(n log r) time, and use it to answer every
subsequent query in O(Q(n)) time until r = min{n, c·n log n

Q(n) }. The queries after the snapping
point require a total cost of O(n log n) = O(n log r). We thus have obtained an algorithm
that guarantees Time(n, r) = O(n Log r) for all r ≤ min{n, c·n log n

Q(n) }, completing the proof
of Theorem 1.

3.3 Tightness of the Streak Bound
This section will explain why the streak bound Ω( n log n

Q(n) ) in Theorem 1 is asymptotically the
best possible for reduction algorithms with “reasonable” behavior.

Black-box Reductions on Decomposable Problems with Restricted Structures. For
proving hardness results, we can specialize the problem class at will, and we do so by
considering only decomposable problems. A reduction algorithm A is required to work on any
decomposable problem that is (B(n), Q(n)) spectrum indexable. As explained in Section 1.1,
this implies a data structure T that can be built on any S ⊆ D in O(|S| · B(|S|)) time and
answer any query on S in O(Q(|S|)) time.

As long as (B(n), Q(n)) spectrum indexability is retained, we can restrict the functionality
of T to make it hard for A. Specifically, T provides only the following “services” to A:

A can create a structure T (S′) on any subset S′ ⊆ S;
given a predicate q ∈ Q, A can use T (S′) to find the answer Ansq(S′) on S′;
given a predicate q, after A already has obtained Ansq(S′

1) and Ansq(S′
2) for disjoint

subsets S′
1, S′

2 ⊆ S, it can combine the answers into Ansq(S′
1 ∪ S′

2) in constant time (the
combining algorithm is provided by T ).

Despite its limited functionalities, T still makes the problem (B(n), Q(n)) spectrum indexable
because the problem is decomposable; see the explanation in Section 1.1.

So far no restriction has been imposed on the behavior of A, but we are ready to do
so now. To answer a query, the algorithm A needs to search the structures on a number
(including zero) of subsets of S, say, T (S′

1), T (S′
2), ..., T (S′

t). The algorithm can choose any
t ≥ 0 and any S′

1, S ′
2, ..., S′

t (they do not need to be disjoint). In addition, A is also allowed to
examine another subset S′

scan ⊆ S by paying Ω(|S′
scan|) time. With all these, the algorithm

must ensure

S′
scan ∪ S′

1 ∪ S′
2 ∪ ... ∪ S′

t = S. (4)

The above constraint is natural because otherwise at least one element of S is absent from
S′

scan ∪ S′
1 ∪ S′

2 ∪ ... ∪ S′
t. If the algorithm A “dares” to return the query answer anyway, it

must have acquired certain special properties of the underlying problem. In this work, we
are interested in generic reductions that are unaware of problem-specific properties.

We will refer to reduction algorithms obeying the above requirements as black-box
reductions. Our algorithms in Lemma 2 and Theorem 1 belong to the black-box class.
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Tightness of Theorem 1. We will prove that any black-box reduction can answer only
r = O( n log n

Q(n) ) queries in O(n Log r) time for any function Q(n) : N+ → N+ that
satisfies Q(n) = O(n), and Q(n) = Θ(Q(c · n)) for any constant c > 0;
is sub-additive, i.e., Q(x + y) ≤ Q(x) + Q(y) holds for any x, y ≥ 1.

This will confirm the tightness of Theorem 1 on the black-box class.
We will contrive a decomposable problem and an accompanying data structure, both of

which make no sense in reality but nonetheless are sound in mathematics. The dataset S

consists of n arbitrary elements; given any predicate, a query on S always returns |S| (the
concrete forms of elements and predicates are irrelevant). Whenever asked to “build” a data
structure on S, we waste on purpose |S| log |S| time and then simply output an arbitrary
permutation of S in an array. Whenever asked to “answer” a query, we waste on purpose
Q(|S|) time and then return |S|. The problem is clearly decomposable.

We argue that any black-box reduction algorithm A needs Ω(Q(n)) time to answer
every query. Consider an arbitrary query and suppose that A processes it by searching the
structures T (S′

1), ..., T (S′
t) for some t ≥ 0 and scanning S′

scan . By the design of our structure,
the query cost is at least

Ω(|S′
scan |) +

∑
i∈[t]

Q(|S′
i|) ≥ Ω(|S′

scan |) + Q
( ∑

i∈[t]

|S′
i|

)
(by sub-additivity)

= Ω
(

Q(|S′
scan |) + Q

( ∑
i∈[t]

|S′
i|

))
(by Q(n) = O(n), Q(n) = Θ(Q(cn)))

= Ω
(

Q
(

|S′
scan | +

∑
i∈[t]

|S′
i|

))
(by sub-additivity)

= Ω(Q(n)). (by (4))

By definition of log(r)-streak, algorithm A must process r = LogStreak(n) queries
within a total cost of O(n log r), which obviously cannot exceed O(n log n) (remember r ≤ n).
It thus follows that A can process only O( n log n

Q(n) ) queries.

4 New DDS Algorithms for Concrete Problems

We now deploy Theorem 1 to develop algorithms for concrete DDS problems, focusing on
decomposable problems in Section 4.1 and non-decomposable problems in Section 4.2.

4.1 Applications to Decomposable Problems
As mentioned, if a decomposable problem has a data structure T that can be built in
O(n log n) time (i.e., B(n) = O(log n)) and supports a query in Q(n) = O(log n) time,
Theorem 1 directly yields a DDS algorithm with Time(n, r) = O(n Log r) for all r ≤ n. We
enumerate below a partial list of such problems with importance to database systems, of
which no algorithms with the same guarantee were known previously.

2D Orthogonal range counting. See Section 1.2 for the problem definition. The structure
T can be a persistent “aggregate” binary search tree (BST) [30].
Orthogonal range counting on rectangles. The dataset S is a set of n 2-rectangles (i.e.,
axis-parallel boxes) in R2. Given an arbitrary 2-rectangle q, a query returns how many
rectangles of S intersecting with q. The problem can be reduced to four queries of the
previous problem (orthogonal range counting on points) [33]. T can once again be a
persistent aggregate BST [30].
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Point location. The dataset S is a planar subdivision of R2 defined by n line segments,
where each segment is associated with the ids of the two faces incident to it. Given
an arbitrary point q ∈ R2, a query returns the face of the subdivision containing q,
which boils down to finding the segment immediately above q (i.e., the first segment “hit”
by a ray shooting upwards from q). The structure T can be a persistent BST [28] or
Kirkpatrick’s structure [20].
k = O(1) nearest neighbor search in 2D. The dataset S is a set of n points in R2. Fix a
constant integer k ≥ 1. Given a point q ∈ R2, a query returns the k points in P closest to
q. The structure T can be a point location structure [20, 28] built on an order-k Voronoi
diagram (an order-k Voronoi diagram can be computed in O(n log n) time [6]). For k = 1,
a DDS algorithm with Time(n, r) = O(n Log r) for all r ≤ n has been found [1]. However,
the algorithm of [1] heavily relies on the ability to merge two (order-1) Voronoi diagrams
in linear time, and thus, cannot be extended to higher values of k easily.
Approximate nearest neighbor search in metric space. The dataset S consists of n objects
in a metric space with a constant doubling dimension (this encapsulates any Euclidean
space with a constant dimensionality). Let dist(o1, o2) represents the distance between
two objects o1 and o2 in the space. Given an arbitrary object q in the space, a query
returns an object o ∈ S such that dist(o, q) ≤ (1 + ϵ) · dist(o′, q) for all o′ ∈ S, where ϵ is
a constant. A structure T fulfilling our purpose can be found in [14,22].

For orthogonal range counting in Rd where d ≥ 3 is a fixed constant (as defined in
Section 1.2), one can apply Theorem 1 to achieve a somewhat unusual result. It is possible [3]
to build a structure T in O(n log n) time that answers a query in Q(n) = O(nϵ) time where
the constant ϵ > 0 can be made arbitrarily small. Theorem 1 thus produces a DDS algorithm
with Time(n, r) = O(n Log r) for all r ≤ n1−ϵ. As ϵ can be arbitrarily close to 0, the
log(r)-streak bound LogStreak(n) = n1−ϵ is lower than the maximum value n only by a
factor sub-polynomial in n. A remark is in order about the significance if this gap could be
closed for all constant dimensionalities. If a DDS algorithm with LogStreak(n) = n could
be discovered, then the algorithm would also settle the following offline version in O(n log n)
time: we are given a set P of n points in Rd and a set Q of n d-rectangles; the goal is to
report, for each d-rectangle q ∈ Q, how many points in P are covered in q. This offline
problem has been extensively studied, and yet the fastest algorithm still runs in n logΘ(d) n

time to our knowledge.

4.2 Non-Decomposable but Spectrum-Indexable Problems
This subsection will utilize Theorem 1 to deal with problems that are not decomposable
problems (at least not obviously). The key is to show that the problem is (Log n, Q(n))
spectrum indexable for a suitable Q(n). This is an interesting topic on its own, as we
demonstrate next by developing new DDS algorithms with Time(n, r) = O(n Log r) for all
r ≤ n on halfplane containment, convex hull containment, range median, and 2D linear
programming. The original algorithms [11,19] for these problems were all designed using the
top-down approach reviewed in Section 2. Our algorithms present a contrast that illustrates
how Theorem 1 can facilitate the design of DDS algorithms.

Halfplane Containment. The problem can be converted [19] to the following equivalent
form by resorting to geometry duality [7]:

Line through convex hull. S is a set of n points in R2. Given any line l in R2, a query
determines if l intersects with the convex hull of S, denoted as CH(S).

We will concentrate on the above problem instead.
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Figure 1 Illustrations of key concepts in Section 4.2.

Suppose, for now, that we are given a point q on l that falls outside CH(S). From q, we
can shoot two tangent rays, each touching CH(S) but not entering into the interior of CH(S).
In Figure 1(a) where S is the set of black points, the first ray passes point p1 ∈ S while the
second passes p2 ∈ S. The two rays form a “wedge” enclosing CH(S) within (note that the
angle of the wedge is less than 180◦); we will call it the wedge of q on CH(S). Line l passes
through CH(S) if and only if l goes through the wedge. If the vertices of CH(S) have been
stored in clockwise order, the two tangent rays can be found in O(log n) time [25].

We will prove that the “line through convex hull” problem is (Log n, Log n) spectrum
indexable. Take any integer s ∈ [1, n] and set m = ⌈n/s⌉. Divide S arbitrarily into S1, S2,
..., Sm such that |Si| = s for i ∈ [m − 1] and |Sm| = n − s(m − 1). To build a structure T ,
use O(s Log s) time to compute CH(Si) for each i ∈ [m] and store its vertices in clockwise
order. The structure’s construction time is O(n Log s). Let us see how to answer a query
with line l. Suppose, once again, that a point q on l outside CH(S) is given. For each i ∈ [m],
compute the wedge of q on CH(Si) in O(Log s) time. From these m wedges, it is a simple
task to obtain in O(m) time the wedge of q on CH(S) (we will deal with a more general
problem shortly in discussing “convex hull containment”). Now, whether l intersects with
CH(S) can be determined easily. The query time so far is O(m Log s).

It remains to explain how to find q. This can be done in O(1) time if we already
have the minimum axis-parallel bounding rectangle of S, denoted as MBR(S). Note that
MBR(S) must contain CH(S); see Figure 1(b). It is clear that MBR(S) can be obtained
from MBR(S1), MBR(S2), ..., MBR(Sm) in O(m) time, while each MBR(Si) (i ∈ [m]) can
be computed in O(s) time during the construction of the structure T . We thus conclude
that the problem is (Log n, Log n) spectrum indexable and can now apply Theorem 1.

Convex Hull Containment. In this problem, S is a set of n points in R2. Given any point
q ∈ R2, a query determines if q is covered by CH(S). We will prove that the problem is
(Log n, Log n) spectrum indexable.

Take any integer s ∈ [1, n] and set m = ⌈n/s⌉. Divide S arbitrarily into S1, S2, ..., Sm

such that |Si| = s for i ∈ [m − 1] and |Sm| = n − s(m − 1). To build a structure T , compute
CH(Si) for each i ∈ [m] and store its vertices in clockwise order; this takes O(n Log s) time as
explained before. Let us see how to answer a query given point q. For each i ∈ [m], whether
q is covered by CH(Si) can be checked in O(Log s) time [25]. If the answer yes for any i,
point q must be covered by CH(S), and we are done. The subsequent discussion assumes
that q is outside CH(Si) for all i. In O(m Log s) time, compute the wedge of q on CH(Si)
for all i ∈ [m] as described in the previous problem.

It remains to determine from the m wedges whether q is covered by CH(S). This can be
re-modeled as the following problem. Place an arbitrary circle centered at q. For each wedge,
its two bounding rays intersect the circle into an arc of less than 180◦. Let a1, a2, ..., am be
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the arcs produced this way, and define a∗ to be the smallest arc on the circle covering them
all. Figure 1(c) shows an example with m = 3. Arc a1 is subtended by points A and B, arc
a2 by points C and D, and arc a3 by points E and F. Here, the smallest arc a∗ goes clockwise
from point A to F. Crucially, q is covered by CH(S) if and only if a∗ spans at least 180◦ (this
is the case in Figure 1(c)) – note that if q is outside CH(S), then a∗ must be subtended by
the wedge of q on CH(S), which must be less than 180◦. Therefore, the goal is to determine
whether a∗ is at least 180◦.

It is possible to achieve the purpose in O(m) time (even if the m arcs are given to us in an
arbitrary order). For this purpose, we process the arcs one by one, maintain the smallest arc
a∗ covering the arcs already processed, and stop the algorithm when it becomes clear that
a∗ must be at least 180◦. Specifically, for i = 1, simply set a∗ to a1. Iteratively, given the
next arc ai (i ≥ 2), check in constant time if an arc of less than 180◦ can cover both ai and
a∗. If so, update a∗ to that arc; otherwise, stop the algorithm. In Figure 1(c), for example,
after a2 is processed, the a∗ we maintain goes clockwise from A to D. When processing a3,
the algorithm realizes that a∗ must be at least 180◦ and hence terminates.

We thus conclude that the convex hull containment problem is (Log n, Log n) spectrum
indexable and can now apply Theorem 1.

Range Median. In this problem, S is a set of n real values stored in an array A. Given
an arbitrary integer pair (x, y) satisfying 1 ≤ x ≤ y ≤ n, a query returns the median of
A[x : y]. We will show that the problem is (Log n, Log n) spectrum indexable. Fix any
integer s ≤ n and m = ⌈n/s⌉. Define Si = A[(i − 1)s + 1 : i · s] for each i ≤ m − 1
and Sm = A[(m − 1)s + 1 : n]. Next, we will assume s ≤

√
n; otherwise, simply use

O(n log n) = O(n log s) time to create a structure of [11] on the whole S, which is able to
answer any query on S in O(log n) = O(log s) time.

To build a structure T , for each i ∈ [m], store Si in ascending order, but each element
of Si should be associated with its original position index in A. It is clear that T can be
built in O(n Log s) time. Let us see how to answer a query with predicate (x, y). First,
determine the values a, b ∈ [m] such that A[x] ∈ Sa and A[y] ∈ Sb, which can be trivially
done in O(m) time. Scan Sa and identify the subset S′

a = Sa ∩ A[x : y] (for each element
in Sa, check if its original index in A falls in [x, y]). Because Sa is sorted, we can produce
S′

a in the sorted order in O(s) time. In the same fashion, compute S′
b = Sb ∩ A[x : y] in

O(s) time. At this moment, all the elements of A[x : y] have been partitioned in b − a + 1
sorted arrays: S′

a, Sa+1, Sa+2, ..., Sb−1, S′
b. The goal now is to find the ⌊(y − x + 1)/2⌋-th

smallest element in the union of these arrays. Frederickson and Johnson [10] described
an algorithm to select the element of a given rank from the union of sorted arrays. Their
algorithm runs in O(m Log n

m ) = O(m Log s) time in our scenario. Overall the query time is
O(s + m Log s) = O(m Log s) because s ≤

√
n.

We now conclude that the range median problem is (Log n, Log n) spectrum indexable
and are ready to apply Theorem 1.

2D Linear Programming. By resorting to geometry duality [7], the problem can be conver-
ted [19] to “line through convex hull” (which we already solved) and the following:

Ray exiting convex hull. Here, S is a set of n points in R2 such that CH(S) covers the
origin. Given any ray emanating q from the origin, a query returns the edge eexit of
CH(S) from which q exits CH(S).

We will concentrate on the above problem instead. Before proceeding, let us state two facts
about the problem:
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Given any ray q, it is possible to find eexit in O(n) time, using an algorithm in [21]; we
will call this the basic algorithm.
We can create a structure in O(n log n) time to answer any query in O(log n) time. First
compute CH(S) and then “dissect” it using the segments connecting the origin to all the
vertices; see Figure 1(d). A query with ray q can then be answered by looking for the
triangle in the dissection that q goes through. We will call this the basic structure.

Unlike all the problems discussed so far, currently we cannot prove that “ray exiting
convex hull” is (Log n, Log n) spectrum indexable. However, by virtue of Theorem 1, we
do not have to! It suffices to show that the problem is (Log n, nc) spectrum indexable for
any positive constant c < 1. Theorem 1 then allows us to answer r ≤ n1−c log n queries in
O(n Log r) time. After r has reached n1−c, we can afford to build the basic structure in
O(n log n) = O(n log r) time to answer every subsequent query in O(log n) = O(log r) time.
This allow us achieve Time(n, r) = O(n Log r) for all r ≤ n.

We will prove that the “ray exiting convex hull” problem is (Log n,
√

n) spectrum indexable.
We will achieve the purpose by resorting to a result of [19], where Karp, Motwani, and
Raghavan used the top-down approach to build a binary tree T with the following properties.

If a node u is at level ℓ of T , then u is associated with a set S(u) of n/2ℓ points in S.
The first ℓ levels of the tree can be built in O(n · ℓ) time.
A query is answered by traversing at most a root-to-leaf path of T . If the search process
descendants to a node u, then the target edge eexit can be found in O(|S(u)|) time by
running the basic algorithm [21] on S(u).

Back to our scenario, fix any integer s ≤ n. Build the first 1 + ⌈Log
√

s⌉ levels of T
on S in O(n Log

√
s) = O(n Log s) time. To answer a query, we descend a path of T to a

node u of level ⌈Log
√

s⌉ if the edge eexit has not already been found. The set |S(u)| has at
most n/2Log

√
s = n/

√
s points. We can thus run the basic algorithm on S(u) to find eexit

in O(n/
√

s) = O( n
s ·

√
s) time. Therefore, “ray exiting convex hull” problem is (Log n,

√
n)

spectrum indexable.
We close this section with a remark, as is revealed by the above discussion, about an

inherent connection between the top-down approach and our reduction. In essence, we build
the structure of [19] incrementally: the i-th (i ≥ 1) “epoch” (in the proof of Section 3.2)
re-builds the first 22i levels of T . This is different from [19] where the nodes are “expanded
upon first touch” in the way described in Section 2. In fact, all existing DDS algorithms
designed based on the top-down approach can be encapsulated into our reduction framework
through the bridge of “spectrum indexability”, in the manner we demonstrated for “ray
exiting convex hull”.

5 DDS Using Structures with ω(n log n) Construction Time

Our discussion so far has focused on data structures with B(n) = O(log n). In this section,
we will first show the necessity of this condition for black-box reductions to guarantee even a
non-constant log(r)-streak bound. As a second step, we present an extension of Theorem 1
that permits the deployment of a structure with max{B(n), Q(n)} = polylog n to produce a
DDS algorithm with good Time(n, r) for all r ≤ n.

Constant Streak Bounds for B(n) = ω(log n). Our subsequent hardness argument
requires n · B(n) to be a convex function. Consider any black-box reduction algorithm A.
Recall that A is required to work on any decomposable problem with a restricted data
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structure (the reader may wish to review Section 3.3 before proceeding). Suppose that A
can guarantee a log(r)-streak bound of LogStreak(n) for all such problems, namely, A can
always answer r queries in O(n Log r) time for all r ≤ LogStreak(n). We will show that,
if B(n) = ω(log n), then LogStreak(n) must be O(1).

In a way similar to Section 3.3, we will contrive a decomposable problem and an accom-
panying data structure. The dataset S contains n arbitrary elements; given any predicate, a
query on S always returns |S|. Whenever asked to build a data structure T (S) on S, we
waste on purpose |S| · B(|S|) time and then output an arbitrary permutation of S in an array.
Whenever asked to answer a query, we immediately return |S| in constant time. In other
words, the function Q(n) is fixed to 1.

Henceforth, we will fix r to the value of LogStreak(n) that A can ensure when it is given
our contrived data structure. We will assume r = ω(1); otherwise, LogStreak(n) = O(1)
and our job is done. As it answers r queries in O(n Log r) time, at least one of the queries
must have a cost of O(n Log r

r ). We will concentrate on this particular query in the rest of
the argument.

Recall from Section 3.3 that, to answer this query, algorithm A needs to search a number
(including 0) of structures T (S′

1), T (S′
2), ..., T (S′

t) and scan a subset S′
scan ⊆ S. As A needs

to pay a cost of Ω(|S′
scan|) to scan S′

scan, it must hold that |S′
scan| ≤ α · n Log r

r for some
constant α > 0. We will consider r, which we know is ω(1), to be large enough to make
α · n Log r

r ≤ n/2. Because A must obey (4), we can assert that

|S′
1 ∪ S′

2 ∪ ... ∪ S′
t| ≥ |S| − |S′

scan| ≥ n/2. (5)

This implies t ≥ 1. Since algorithm A must pay a constant time to search each structure
T (S′

i) (i ∈ [t]), we must have

t = O((n/r) · Log r). (6)

However, by how we design T , the total cost of constructing T (S′
1), T (S′

2), ..., T (S′
t) is∑

i∈[t]

|S′
i| · B(|S′

i|). (7)

Set λ =
∑

i∈[t] |S′
i|; from (5), we know λ ≥ n/2. As n · B(n) is a convex function and B(n)

is non-decreasing, we know that (7) is minimized when |S′
i| = λ/t for all i ∈ [t]. Therefore:

(7) ≥ λ · B(λ/t) ≥ n

2 · B
( n

2t

)
. (8)

From (6), we have n/(2t) = Ω(r/ log r). Because B(n) = ω(log n), rudimentary asymptotic
analysis shows that B(n/(2t)) must be ω(log r).

We now conclude that (8), and hence (7), must be ω(n Log r). But this contradicts
that algorithm A can process r queries in O(n Log r) time. Therefore, our assumption that
r = ω(1) must be wrong.

DDS Algorithms with B(n) = ω(log n). Data structures having ω(n log n) construction
time are still useful for DDS as long as we are not obsessed with answering r queries in
O(n Log r) time. To make this formal, we modify the techniques behind Theorem 1 to obtain
another generic reduction with the following guarantees.

▶ Theorem 3. Suppose that B(n) and Q(n) are non-decreasing functions that are both
O(logγ n) where γ ≥ 1 is a constant. Every (B(n), Q(n)) spectrum indexable problem admits
a DDS algorithm with Time(n, r) = O(n Logγ r) for all r ≤ n.

ICDT 2025
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The proof is similar to what was presented in Section 3.2 and is moved to Appendix A. An
interesting application of the above is orthogonal range counting/reporting in Rd where d is a
fixed constant at least 3 (see the problem definition in Section 1.2). The range tree augmented
with fractional cascading [9], constructable in O(n logd−1 n) time on n points, answers a
counting/reporting query also in O(n logd−1 n) time. The problem is decomposable and
thus (Logd−1 n, Logd−1 n) spectrum indexable. Theorem 3 directly gives a DDS algorithm
with Time(n, r) = O(n Logd−1 r) for all r ≤ n, which strictly improves the results of [19] as
mentioned in Section 1.2.
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A Proof of Theorem 3

Our algorithm executes in epochs. At the beginning of the i-th (i ≥ 1) epoch, we set s = 22i

and create a structure T – the structure promised by (B(n), Q(n)) spectrum indexability
– on S in O(n · B(s)) = O(n · 2i·γ) time. The structure allows us to answer any query in
O(n

s · Q(s)) time. The i-th epoch finishes after s queries are answered during the epoch.
These queries have a total cost of

s · O
(n

s
· Q(s)

)
= O(n · Q(s)) = O(n · 2i·γ).

Hence, the total computation time of the i-th epoch is O(n · 2i·γ). Because γ ≥ 1, we
know that n · 2i·γ at least doubles when i increases by 1. Hence, the total cost of all epochs
is asymptotically dominated by O(n · 2h·γ), where h is the number of epochs needed.

Precisely, the value of h is the smallest integer x ≥ 1 satisfying two conditions:
C1: 22x ≤ n (the value of s must not exceed n);
C2:

∑x
i=1 22i ≥ r (the number of queries answerable by h epochs must be at least r).

Let H represent the smallest integer x ≥ 1 such that 22x ≥ r. This means

22H−1
< r ⇔ 22H

< r2. (9)

When 22H ≤ n, the definitions of h and H imply h ≤ H. In this case, all the epochs incur a
total cost of O(n · 2h·γ) = O(n · 2H·γ) = O(n Logγ r).

The above argument does not work if 22H

> n. However, when this happens, we know
from (9) that r2 > 22H

> n, leading to r >
√

n. As soon as r reaches ⌈
√

n⌉ – the snapping
point – we create a structure T on the whole S in O(n logγ n) time, and use it to answer
every subsequent query in O(Q(n)) = O(logγ n) time until r = n. The queries after the
snapping point require a total cost of O(n logγ n) = O(n logγ r). We thus have obtained an
algorithm that guarantees Time(n, r) = O(n Logγ r) for all r ≤ n, completing the proof of
Theorem 3.
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