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Abstract

In this work, we present an attentional system for a robotic
agent capable of adapting its emergent behavior to the sur-
rounding environment and to its internal state. In this frame-
work, the agent is endowed with simple attentional mecha-
nisms regulating the frequencies of sensory readings and be-
havior activations. The process of changing the frequency
of sensory readings is interpreted as an increase or decrease
of attention towards relevant behaviors and particular aspects
of the external environment. In this paper, we present our
framework discussing several case studies considering incre-
mentally complex behaviors and tasks.

Introduction
An autonomous robotic agent is expected to operate in com-
plex dynamic environments by continuously monitoring the
internal processes and the external environment. The robot
executive system is to coordinate different low-level strate-
gies (such as obstacles avoidance, walls follow, gates cross-
ing, etc.) with high-level activities (such as achieving a goal,
picking up an object, etc.), giving them, from time to time,
different priority values both for allocation of resources and
for action selection processes. The low-level activities are
usually safety critical and are managed in a reactive way. On
the other hand, high-level activities are generally achieved
by processing more complex tasks, and, therefore, require
high computational costs for both the inputs processing and
data acquisition from the environment.

In this context, attentional mechanisms balancing sensory
elaboration and actions execution can play a crucial role. In
particular, attentional mechanisms have two main roles: di-
rect sensors towards the most salient sources of information;
filter the available sensory data to prevent unnecessary in-
formation processing. As a result of the application of these
mechanisms, the robot behavior should be enhanced: the
robot is to react faster to task-related or safety critical stim-
uli because processing resources are focused on not relevant
stimuli.

Attentional mechanisms applied to autonomous robotic
systems have been proposed elsewhere (e.g. (Mitsunaga and
Asada 2002; Carbone et al. 2008; Frintrop, Jensfelt, and
Christensen 2006)), mainly for vision-based robotics. In

contrast, in our work, we are interested in artificial atten-
tional processes suitable for the executive control. In partic-
ular, our aim is to provide a kind of supervisory attentional
system (Norman and Shallice 1986; Cooper and Shallice
2000) capable of monitoring and regulating multiple concur-
rent behaviors at different level of abstraction. The notion of
divided attention(Kahneman 1973) suggests that a limited
amount of attention is allocated to tasks, with the resources
involved in multi-task performances, and can be available in
graded quantity. In an artificial setting, this can be obtained
by introducing suitable scheduling mechanisms.

In this work, we present a behavior-based control ar-
chitecture endowed with attentional mechanisms which are
based on periodic releasing mechanisms of activations (Bu-
rattini and Rossi 2007; 2008). In this context, each behavior
is equipped with an adaptive internal clock that regulates the
sensing rate and the resulting action activations. The pro-
cess of changing the frequency of sensory readings is inter-
preted as an increase or decrease of attention towards rele-
vant behaviors and particular aspects of the external environ-
ment: the higher is the frequency, the higher is the resolution
at which a process is monitored and controlled. Here, we
present our framework providing several case studies where
we discuss the effectiveness of the approach considering its
scalability and the adaptivity with respect to different envi-
ronments and tasks.

Attentive Executive Control
Our goal is to develop a behavior-based control system en-
dowed with attentional mechanisms which focus sensory ac-
quisitions and processing and modulates behaviors activa-
tions. The executive system should be enhanced with a su-
pervisory attentional system (Norman and Shallice 1986) to
suitably combine delibertive and reactive activities, moni-
toring and regulating multiple concurrent behaviors (Kah-
neman 1973). Our working hypothesis is that attentional be-
haviors are affected by internal self-regulating mechanisms
and external sources of salience. The attentional global be-
havior should emerge from the interrelation of the atten-
tional mechanisms associated with each single behavior.

Design Principles
The attentional control system we consider in this work
combines the following design principles:
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Figure 1: Each behavior is composed of an adaptive clock, a
releasing function,a perceptual schema and a motor schema.

• Behavior-based control system. The attentional control
is obtained from the interaction of a set of multiple par-
allel attentional behaviors working at different levels of
abstraction.

• Attentional monitoring. Attentional mechanisms are to
focus monitoring and control activities on relevant inter-
nal behaviors and external stimuli.

• Internal and external sources of salience. The sources of
salience are behavior and task dependent; these can de-
pendent by either internal states (e.g. hunger, fear) or ex-
ternal stimuli (e.g. obstacles, unexpected variations of the
environment).

• Adaptive sensory readings. For each behavior, the process
of changing the rate of sensory readings is interpreted as
an increase or decrease of attention towards a particular
aspect of the environment the robotic system is interacting
with: the higher is the frequency, the higher the resolution
at which an activity is monitored and regulated.

• Emergent attentive behavior. The overall attentional be-
havior should emerge from the interrelations of the atten-
tive mechanisms associated with the behaviors.

Attentive Monitoring in the AIRM Architecture

In (Burattini and Rossi 2007; 2008), we connected the con-
cept of IRM (Innate Releasing Mechanisms) (Lorenz 1991;
Tinbergen 1951) to the concept of periodical activations of
behaviors (Pezzulo and Calvi 2006; Stoytchev and Arkin
2001; 2004) introducing the Adaptive Innate Releasing
Mechanisms (AIRMs). An AIRM is areleasing mechanism
endowed with an internaladaptive clock.

In Figure 1 the AIRM is represented through a Schema
Theory representation (Arbib 1998). Each behavior is char-
acterised by a schema composed of a Perceptual Schema
(PS), which elaborates sensor data, a Motor Schema (MS),
producing the pattern of motor actions, and a control mech-
anism, based on a combination of a clock and a releaser. In
particular, the releaser enables/disables the activation of the
MS, according to the sensor dataσ(t). For example, the
presence of a predator releases the motor schema of an es-
cape behavior. Instead, the adaptive clock is active with a
base period and it enables/disables data flowσr(t) from sen-
sors to PS. Therefore, when the activation is disabled, sensor

data are not processed (yielding to sensory readings reduc-
tion). Furthermore, the clock regulates its period, hence the
frequency of data processing, using a feedback mechanism
on the sensor dataσ(t).

We assume a discrete time model - with the machine cy-
cle as the time unit - where each behavior is endowed with a
clock regulating its own activations. This regulation mecha-
nism, that we callmonitoring strategy, is characterized by:

• An initial period pb called base period, ranging in an in-
terval[pmin, pmax],

• An updating function f(t) : R
n → R that changes the

clock periodp, according to the parameters the behavior
depends on (sensors used, internal state, special features
of the environment, and the behavior goal).

• A trigger functionρ(t, pt−1), which enables/disables the
data flowσr(t) from sensors to PS, at eachp time unit.
More formally:

ρ(t, pt−1) =

{

1, if t mod pt−1 = 0
0, otherwise (1)

• Finally, a support functionφ( f (t)) : R → N maps the val-
ues generated by the updating functionf (t) in a range
of allowed values for the period[pmin, pmax]. More pre-
cisely:

φ(x) =

{

pmax, if x≥ pmax
⌊x⌋, if pmin < x < pmax
pmin, if x≤ pmin

(2)

Now, starting from the clock period at time 0,

p0 = pb with t = 0 andpb ∈ [pmin, pmax]

The clock period at timet is regulated as follows:

pt = ρ(t, pt−1)∗φ( f (t))+(1−ρ(t, pt−1))∗ pt−1 (3)

That is, if the behavior is disabled, the value of the period
calculated at timet remains unchanged at the last computed
value pt−1. Instead, when the value of trigger function is
equal to 1, the behavior is activated and, subsequently, its
activation period changes according to theφ( f (t)) function.

Attentive Monitoring and Control.Themonitoring strategy,
i.e. the process of changing the clock sampling rate, can be
associated with the increase or decrease of attention towards
a particular behavior. Namely, the more salient is the behav-
ior, the higher is the clock frequency and the resolution at
which a behavior is monitored and regulated. Notice that,
the frequencies of the adaptive clocks provide also a divided
attention mechanism: the monitoring activity is distributed
over the concurrent behaviors depending on the frequencies
of their associated clocks.

Following this approach, we can obtain different atten-
tional mechanisms associated with each behavior once we
define the associatedmonitoring strategy. Therefore an at-
tentive behavior will result from the combination of the the
initial period pb, the permitted values range[pmin, pmax]
and the updating policyf (t). In order to obtain a good
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monitoring strategies, it isnecessary to balance the cost of
monitoring a behavior against the risk of acquiring inaccu-
rate/degraded information about the environment.

These attentive monitoring strategies are introduced to
provide the following main benefits:

• the periodical activation can reduce the number of activa-
tions of the perceptive system causing a relative decrease
in the computational burden, and improving performance
of the entire system;

• the use of adaptive activation mechanisms allows us to
obtain a behavior that adapts itself to the specific environ-
mental conditions (e.g. the robot reads sensors more often
if there is a dangerous situation and less often in cases of
a safe operational situation).

Example.Consider the example of a person who is crossing
a street. Depending on the traffic intensity, this person has
to pay more or less attention while crossing the street, turn-
ing his head left and right. Here, the monitoring frequency
should be regulated according to the speed of the passing
cars. The pedestrian has to react according not only to the
environmental change (a car passing on the street) but also
to the speed at which this happens (fast or slow cars). In-
tuitively, we can associate the speed of the pedestrian and
his monitoring activity to the speed of the passing car. Fol-
lowing this approach, in (Burattini and Rossi 2008), we pro-
vided an example of a robot whose task was to cross a street
avoiding moving obstacles. In this case, the updating policy
has a frequency that is directly proportional to the speed of
the moving obstacles: the higher the speed, the smaller the
sampling period.

Case Studies Overview
In this section, we present and discuss our framework de-
ployed in different scenarios and setting, both in simulation
and in the real world, from simple scenarios to more com-
plex settings. Our aim is to discuss our approach considering
its effectiveness efficiency, adaptability (in different scenar-
ios), and scalability (considering increasingly complex be-
haviors and tasks).

For the simulated experiments we used theStagetool of
the Player project (Gerkey, Vaughan, and Howard 2003),
while for the real one we used hePIONEER3DX robotic
platformActive Media Robotics, endowed with a blobfinder
camera, and sonars.

Conflicting tasks
In previous work (Burattini and Rossi 2010;
Burattini et al. 2010), we investigated the application
of the AIRM attentional mechanisms in simple cases of
conflicting behaviors. In the following we provide an
overview of two scenarios presented in (Burattini and Rossi
2010) and (Burattini et al. 2010) respectively.

Emergent Action Selection in Conflicting Tasks.In (Burat-
tini and Rossi 2010), we describe a simple case study in-
volving two conflicting attentive behaviors:ESCAPE, rep-
resenting predator avoidance,FIND FOOD, representing the

Figure 2: Conflicting tasks: food and predator.

search forfood.FIND FOOD has an updating policy that de-
pends onthe risk of starvation, and it is regulated by a linear
time-dependent function representing hunger: the higher the
hunger, the higher the attention towards the food.ESCAPE
changes its clock period following the Weber-Fechner law
of perception which is used to represent fear: the higher the
fear, the higher the attention towards the predators. When
FIND FOOD is enabled and the robot perceives a green ob-
ject (representingfood), it activates a movement towards the
food. When theESCAPE is enabled and the robot perceives
a red object (representing a possible threat), it activates a
movement opposite to the threat and a velocity inversely
proportional to the clock period.

When the robot encounters a red object close to a green
object (see Figure 2) we have a conflicting behavior. In
this case, the attentional mechanisms implemented with
the adaptive clocks allow to balance the trade off between
the risk of predation and the risk of starvation. This can
be obtained avoiding the introduction of explicit action
selection mechanisms. Indeed, if the threat stand still, as
soon as the risk of starvation increases more than the value
of theESCAPE clock, the robot starts moving towards the
food, escaping in the case an abrupt movement of the threat.
The combination of these two behaviors, elicited by the
risk of starvation and the risk of predation, is an oscillating
movement that will lead, eventually, to reach the position of
the food.

Parallel Execution of Conflicting Task.Inspired by studies
(Patten et al. 2004; Harbluk, Noy, and Eizenmann 2002)
on cognitive distraction while driving (i.e., talking over a
mobile phone), (Burattini et al. 2010) considers a case
study including two behaviors that, although conflicting, can
be simultaneously carried on. (Harbluk, Noy, and Eizen-
mann 2002) shows that drivers, under a high cognitive load,
execute less saccadic movements consistently with an in-
crease of fixation time and a smaller exploration of the visual
field. These results suggest that parallel tasks can be accom-
plished, but the resources allocated to each task are dynami-
cally distributed according to environmental conditions and
to cognitive and physical capabilities.

To investigate our framework in an analogous setting, in
(Burattini et al. 2010), we designed the case study of a mo-
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Figure 3: The hallway domain.

bile robotthat is to run across a hallway in the shortest time
possible, while counting green blobs distributed on walls
and arranged into clusters (Burattini et al. 2010) (see Fig-
ure 3). The two tasks of running and counting conflict on
the speed of the robot. Indeed, the first task requires a high
speed, while the second require a slow speed to effectively
count all the blobs.

In order to accomplish the two tasks we implemented
a robotic system endowed with three behaviors:RUN,
SEARCH, andSCAN. SEARCH looks for green blobs on the
left and right wall. This behavior works with a maximal
frequency until at least one green blob is detected, then the
period is increased proportionally to the amount of green
blobs. SCAN counts the blobs once a salient area is iden-
tified and the clock period is proportional to theSEARCH
activation frequency.RUN sets the speed of the robot that is
in inversely proportional to the period. The clock period of
theRUN is directly proportional to the period ofSEARCH.

The observed system behavior is the following. The robot
starts running with a medium speed, looking for green ob-
jects on the walls of the corridor. When the system detects
a cluster of blobs, the period ofSCAN decreases, allowing
the robot to slow down its speed and to count the objects it
detects. Similarly, if no green objects are detected, the pe-
riod of theRUN become smaller, allowing a more accurate
exploration (moving several times the camera looking for
objects), and increasing the system speed to reach the end of
the corridor as soon as possible.

In (Burattini et al. 2010), we compared the system perfor-
mances with respect to an analogous system with non adap-
tive clocks (i.e. activation at each machine cycle). The ex-
periments show that the proposed architecture performs bet-
ter compared to the non attentional setting in terms of: num-
ber of detected blobs (effectiveness); tradeoff between time
and counted blobs (cost/benefit); error of detection (preci-
sion); less activations of the perceptual schema (efficiency).
The attentive system is effective in counting blobs because it
can coordinate and modulate speed and pan-tilt control, fo-
cusing the visual exploration on the region of interest. The
overall attentional coordination increases the time needed to

Figure 4: Control architecture.

accomplish thetask, but this additional time is spent in the
counting phase, effectively trading off between time and pre-
cision. Basically, the system can modulate the activation fre-
quencies on the basis of the available resources and external
conditions. Indeed, using the adaptive clocks, the number
of behaviors activations substantially decreases compared to
the case where each behavior is enabled at each machine cy-
cle, and this results in a substantial gain in performances.

Foraging domain

In this scenario, we consider a robot whose aim is to ex-
plore a dynamic and unknown environment avoiding obsta-
cles and seeking sources of energy to recharge its batteries
in a fixed amount of time.

In this scenario, we evaluated the performances of our at-
tentive system with respect to the performances of analogous
behavior-based systems not equipped with adaptive clocks.
In particular, to better assess the gain due to the attentional
mechanisms, we compared the system with respect to two
different versions of the control system:

(a) a cautiousversion of the system, that we callwithout
clocks (STD): where each behavior can be activated at
each machine cycle, depending on the releasing function
(as in a standard non adaptive behavior-based architec-
ture);

(b) abraveversion of the system withperiodic clocks: where
behaviors are associated with periodic, but fixed, activa-
tion periods. In this case, each behavior has its own clock
without attentional adaptivity.

In this setting, we want to prove the scalability of the at-
tentive mechanism with respect to the system complexity
(system with more behaviors) and different environmental
conditions (obstacles configurations). Our aim here is to
demonstrate the ability of our attentive monitoring strategies
to regulate the resources distribution among the different be-
haviors.
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Behavior-based control. The robot behavior is ob-
tained as the combination of the following primitive be-
haviors (see Figure 4): AVOID, SEARCH BATTERY,
MOVE TO BATTERY.

The AVOID behavioris responsible for obstacle avoid-
ance. This behavior is safety critical and needs an updating
policy for its adaptive clock which is able to timely react to
dangerous situations. In this case, theAVOID clock period
changes according to the first derivative of the input percept.
More formally, theAVOID clock period is updated accord-
ing to (3), with the following updating function:

f (t) =
( αavoid∗ pt−1

∆σ(t)+kavoid

)

where∆σ(t) is equal toσ(t)−σ(t− pt−1) that is the differ-
ence between the actual data perceived by the sensorσ(t)
and date received at the previous sampling timeσ(t− pt−1).
In this way, theAVOID activations frequency adapts itself
not only to the environmental changes, but also to the speed
at which these changes take place.αavoid andkavoid are two
attenuation parameters. These two parameters are context
dependent and can be tuned by a suitable learning algorithm.

TheAVOID behavior is responsible not only for the robot
orientation, but also for its speed variations. In particular,
speed is related to the period according to the following re-
lation:

speedt =
max speed× pt

pmax

wherespeedt is the current speed,max speedis the maxi-
mum value allowed for the robot speed. The range of values
for the speed is[0,0.3]m/s. In this way, if the period is re-
laxed, the robot moves at a maximum speed, otherwise, it
slows proportionally to the decrease of the period. This al-
lows the agent to avoid obstacles in a smooth way (see the
next paragraphs for details).

The SEARCH BATTERY behavior provides a random
search of sources of energy in the environment. The fre-
quency of this behavior activation is related to the level of
charge of the robot’s battery. The lower the battery, the
greater the activity of the search behavior. Since we assume
that the energy need is represented by a functione(t) that
grows with time, the updating function can be defined as
follows:

f (t) =
ksearch

e(t)+hsearch

whereksearchandhsearchare two context dependent parame-
ter to be suitably tuned by a learning algorithm. The output
of this behavior is a random pattern of orientations for the
motor action.

The MOVE TO BATTERY behaviorguides the agent to-
wards the battery when this has been identified. So the re-
leaser is activated by battery detection using the blob cam-
era. Analogously, to the previous updating function, the pe-
riod of this behavior activation also depends on the level of
the battery charge and can be defined as:

f (t) =
kmove

e(t)+hmove

(a) Sparse scenario (b) Dense scenario

Figure 5: Map of the environment in two scenarios. En-
ergy sources and obstacles are, respectively, the small red
boxes and the big green boxes. The robot is the blue rounded
square at the left bottom.

Namely, the adaptive clock period is regulated by a time-
dependent function that represents the agent need of energy.

If the releaser is on and the agent can perceive the bat-
tery, the output will be a movement towards it, otherwise
the agent will relies on theSEARCH BATTERY behavior.
The trajectory towards the battery is calculated with respect
to the centroid of the red blob, which identifies the battery
charge in the scene.
Testing Scenarios.The robotic system works in a foraging
domain characterized by an area of 20m x 20m (400m2). In
this environment we considered two possible configurations:
(1) a sparse scenario with few obstacles (Figure -(a)) and (2)
a dense scenario with many obstacles (Figure -(b)). The size
of the robot with respect to the environment is 0.2 m× 0.1 m
(0.2 m2). Obstacles are represented by a green square (0.7m
× 0.7 m), while the energy source by red square in size 0.3
m×0.3 m. We performed the experiments in simulation us-
ing theStagetool.

In these scenarios, we considered the system perfor-
mances by incrementally adding behaviors and tasks.
From only one behavior (AVOID) to a combination
of three behaviors (AVOID,SEARCH BATTERY, and
MOVE TO BATTERY). For each setting, we collected the
data of10 runs.
Avoiding Obstacles. First of all, we considered a robot
equipped with theAVOID behavior, whose task is to safety
navigate into the environment with obstacles, for a fixed in-
terval of time (5 minutes). This test has been performed in
both the sparse and dense scenarios.

In Table 1, the results of the attentive system are compared
with respect to the caution version (case (a)),without clocks,
and brave version (case (b)), withperiodical clocks.

The collected parameters are: the number of activations of
the avoid behavior, the number of possible dangerous situa-
tion (minimum distance from the obstacle detected by sonar
less then 0.3m), and the average speed of each run.

In Table 1, we see that both in the case of sparse and dense
obstacles, the number of the different behaviors activations
is radically reduced in the case of the attentive system. Less
behavior activations determines a reduction in the computa-
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AVOID dangers speed (m/s)
avg st.dev avg st.dev avg st.dev

SPARSE adaptive 403 18 6,8 6,7 0,2874 0,0045
SPARSE periodic 621 14 24,3 27,4 0,2886 0,0053
SPARSE without clock 1203 4 0 0 0,2078 0,0312
DENSE adaptive 476 30 3,6 5,5 0,2696 0,0075
DENSE periodic 625 3 45,3 49,8 0,2748 0,0136
DENSE without clock 1279 25 0 0 0,1704 0,0118

Table 1: Attentive, Periodic and STD architectures endowed with theAVOID behavior and compared in the sparsity and density
scenario.

tional time spent for sensory data acquisition and processing.
Furthermore, these results show that by improving the

complexity of the environment we do not lose the benefits
of the attentive setting in term of low activations and high
average speed.

The results obtained with periodic clocks represent a
medium case. Indeed, the periodic setting reduces the
behavior activations with respect to the setting without
clocks, however, without adaptability we cannot ensure
the robot safety (note the increment of possible dangerous
situations in the case of periodic clocks).

Avoiding Obstacles and Reaching a Source of Energy.In
a second set of tests, we enhanced the functionality of
the control system by adding theSEARCH BATTERY and
MOVE TO BATTERY behaviors.Here, the robot task is to
safety navigate the environment trying to reach the source
of energy according to its needs in a fixed amount of time.
The amount of time chosen for the experiments is 3 minutes.
As before, we compared the performances of the three archi-
tectures both in the sparse and in the dense environment.

In Table 2, in addition to the data presented in the previous
test, we show also the average number of sources of energy
reached.

Differently from previous case, the number of
MOVE TO BATTERY activations is minimal with a pe-
riodic system, however, here we have also a decrease in
the average number of batteries reached. This happens
because theMOVE TO BATTERY behavior is responsible
of directing the robot toward the source of energy, hence,
the smaller the number of the activations the lower the
chance of finding battery and the precision of the robot
maneuvers during the battery approach. Moreover, in the
periodic setting, the number of possible dangers grows
dramatically with respect to the attentive one, where we find
more sources of energy and less dangerous situations.

If we compare the attentive architecture with respect to
the one without clocks, we see less activations (Table 2),
more energy found, and less crashes despite the average
speed the robot remains high. This means that the attentive
robot can reach its goals earlier with less effort.

Moreover, the attentive behavior appears smoother and
more natural then the one of the non adaptive versions; this
also affects safety. For example, in the attentive case the
agent can avoid obstacles in a smooth way (Figure 6-(a)),
because theAVOID behavior, responsible for the speed vari-
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Figure 6:Comparing avoidance behaviors.

6



AVOID MOVE TO B SEARCHB dangers speed (m/s) energy
(S=Sparse/D=Dense) avg st.dev avg st.dev avg st.dev avg st.dev avg st.dev avg st.dev
S adaptive 310,7 10,4 132,6 67,0 45,2 5,1 39,4 25,8 0,282 0,003 1,1 0,6
S periodic 560,2 62,4 17,5 37,0 113,6 22,8 136,9 77,1 0,167 0,003 0,2 0,4
S without clock 968,8 69,8 417,8 197,0 302 101,7 87,7 40,9 0,175 0,012 1,9 0,7
D adaptive 330,3 6,8 250,5 114,4 32,6 7,0 15,2 9,9 0,238 0,018 0,8 0,4
D periodic 605,2 175,1 28,7 59,4 93,9 29,1 72 111,4 0,162 0,007 0,4 0,8
D without clock 1054 43,9 106,5 50,5 408,2 124,9 49,5 15,2 0,169 0,021 1,1 0,6

Table 2: Attentive, Periodic and STD architectures endowed with threebehaviors and compared in the sparsity and in the dense
scenarios.

ations, can modify the robot speed proportionally to the rele-
vance of the situation. Instead, in the non-adaptive case, the
speed is very high if there is no danger, very low otherwise;
this produces drastic speed variations (Figure 6-(b)) that can
determine unsafe behaviors.

Related Works
Attention-based control is an emerging issue, in particu-
lar for vision-guided mobile robots. Several approaches
in literature address the problem of feature extraction to
support task execution (Minato and Asada 2001), localiza-
tion, mapping, and navigation (Mitsunaga and Asada 2002;
Frintrop, Jensfelt, and Christensen 2006; Carbone et al.
2008). For instance, in (Minato and Asada 2001) an attentive
behavior is learned by pairing actions and image features.

Mechanisms for executive and divided attention in robot
execution monitoring are less explored. In (Garforth,
McHale, and Meehan 2006), the authors investigate exec-
utive attention in mobile robotics tasks proposing the de-
ployment of a supervisory attentional system inspired by
(Norman and Shallice 1986). Concurrent tasks interacting
with the attentive processes are considered in (Wasson, Ko-
rtenkamp, and Huber 1999) where we find a robot architec-
ture integrating active vision and tasks execution. However,
here divided attention is not considered while attentive and
goal-directed behaviors are integrated and coordinated using
a perceptual memory.

Closely related to our system, in (Stoytchev and Arkin
2001) Stoytchev and Arkin propose an hybrid architecture
combining deliberative planning, reactive control, and mo-
tivational drives. In this context, the internal state is repre-
sented by motivational variables affecting action and percep-
tion. Analogously to our framework, periodic activations of
behaviors as cicardian rhythms and time-dependent motiva-
tional processes are deployed, however, here internal clocks
are not directly used for attention selection and behavior
modulation.

Other authors dealt with flexible/adaptive behavior real-
ized through timed activations. For example, (Pezzulo and
Calvi 2006) presented a parallel architecture focused on the
concept of activity level of each schema which determines
the priority of its thread of execution. A more active percep-
tual schema can process the visual input more quickly and
a more active motor schema can send more commands to
the motor controller. However, while in our approach such
effects are obtained through periodic activation of behav-

iors, in (Pezzulo and Calvi 2006) the variables are elaborated
through a fuzzy based command fusion mechanism.

Our attentive sampling can be also related to flexible
scheduling for periodic tasks in real-time systems (Buttazzo
et al. 2002; Beccari, Caselli, and Zanichelli 2005). Here,
analogously to our system, period modulation is exploited
to degrade computation and keep balanced the system load.
For example in (Buttazzo et al. 2002), the authors propose
an elastic model to decide how to change the sampling pe-
riod associated with a task. Similar techniques can be in-
corporated in our framework, however, in our case sampling
rate depends not only on the computational load, but also
on salience due to environmental changes, motivations, and
goals.

Conclusions and Future Work
In this paper, we illustrate an attention-based control archi-
tecture for a robotic system capable of adapting its emer-
gent behavior to the surrounding environment and to its in-
ternal state. While attention-based robot control has been
already considered in literature, mainly for vision-based
robots, mechanisms for executive and divided attention in
robot execution monitoring are less explored. In the context
of a behavior-based executive system, we introduced simple
attentional mechanisms which are based on the periodic re-
leasing mechanisms of activations introduced by (Burattini
and Rossi 2007; 2008).

In the proposed attentional system, each behavior is
equipped with an adaptive clock and the process of chang-
ing the frequency of sensory readings is interpreted as an
increase or decrease of attention towards relevant behaviors
and particular aspects of the external environment.

To validate our approach, we experimented the control
architecture in different case studies. In particular, we
tested the scalability and the adaptivity of the approach
with respect to different and heterogeneous environments
and tasks. Furthermore, we evaluated the performances of
the attentional system with respect to the performances of
other behavior-based systems not provided with attentive
and adaptive mechanisms. The collected results show that
attentional mechanisms permit a smooth and natural emer-
gent behavior in all the considered scenarios trading off be-
tween adaptivity and performances. We are currently inves-
tigating suitable learning mechanisms to set the parameters
associated with monitoring strategies and attentional mech-
anisms to combine deliberative and reactive processes.
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